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A B S T R A C T

Systems with predetermined Lyapunov functions play an important role in many areas of applied
mathematics, physics and engineering: dynamic optimization methods (objective functions and
their modifications), machine learning (loss functions), thermodynamics and kinetics (free
energy and other thermodynamic potentials), adaptive control (various objective functions,
stabilization quality criteria and other Lyapunov functions). Dimensionality reduction is one
of the main challenges in the modern era of big data and big models. Dimensionality reduction
for systems with Lyapunov functions requires preserving dissipativity : the reduced system must
also have a Lyapunov function, which is expected to be a restriction of the original Lyapunov
function on the manifold of the reduced motion. An additional complexity of the problem is
that the equations of motion themselves are often unknown in detail in advance and must be
determined in the course of the study, while the Lyapunov function could be determined based
on incomplete data. Therefore, the projection problem arises: for a given Lyapunov function,
find a field of projectors such that the reduction of any dissipative system is again a dissipative
system. In this paper, we present an explicit construction of such projectors and prove their
uniqueness. We have also taken the first step beyond the approximation by manifolds. This is
required in many applications. For this purpose, we introduce the concept of monotone trees
and find a projection of dissipative systems onto monotone trees that preserves dissipativity.

. Introduction

Dimensionality reduction is one of the main tasks in data analysis and mathematical modelling of complex system [1]. Many
inear and non-linear methods were developed for solving this problem. Famous Principal Component Analysis (PCA) was invented
y K. Pearson in 1901 [2] for data modelling and extraction essential features. Despite its very long history, this method still attracts
 lot of attention from many researchers with the publication of a large number of practical recommendations and modifications [3].

Manifold learning is the first non-linear generalization of PCA [4,5]. Various methods of non-manifold low-dimensional data
pproximation have been also developed [6,7] and used for solving applied problems [8,9]. In addition to the injective data
pproximation methods, when the approximant is embedded in the dataspace, a large family of projective methods has been
eveloped in which only the projection function onto the base space is learnt (see a brief review with a comparison of modern
njective and projective methods in [10]).

The development of mathematical models of complex networks requires effective model reduction technology [11]. Many
ethods were created in the field of chemical dynamics [12] at the beginning of the twentieth century and then received
athematical justification. Here we should mention the 1956 Nobel Prizes awarded to Semenov and Hinshelwood, for research
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based on effective dimensionality reduction by the method of quasi-stationary concentrations (for more information, we refer to the
reviews of [13,14] and the textbook [15]). The very popular machine learning algorithms for nonlinear dimensionality reduction
nd manifold learning, autoencoders, were invented first for chemical applications [16,17].

Two very general mathematical ideas are used in dimensionality reduction for large dynamical systems: invariant manifold and
yapunov function. The motion reduced to an invariant manifold never leaves it. If this manifold is, at the same time, a slow manifold,

then the game is over and the reduced description is ready [18,19]. Methods of invariant manifold aim to find a good approximation
to the unknown slow invariant manifold.

Lyapunov functions monotonically decrease (non increase) along the systems trajectories. They appear in various forms: entropy
or free energy (for physical and chemical systems [18,20–22]) and informational entropy or various divergences for machine
learning [23–27], generalized fitness (for evolutionary modelling [28–30]), loss function [31] (for machine learning), or just general
Lyapunov functions for many general problems of control, machine learning and adaptation in dynamical systems [32].

Information about the Lyapunov function for large dynamical systems may be much more reliable than the information about
ynamic (vector field) itself. In physical and chemical applications we can operate by entropy, free energy and other thermodynamic
otentials even when the detailed kinetics is not well-known. Similarly, in machine learning we can define the loss functions before
etailed specification of the learning algorithm. In adaptive control and observation problem, we also define the quality functionals
efore construction of observers and the adaptation algorithm.

Definition of the Lyapunov function for a reduced system is very simple: we can just restrict the Lyapunov function of the initial
ystem on the manifold of reduced description. But projection of the original dynamics is not so obvious. Of course, if the manifold
f the reduced description is invariant with respect to original dynamics, then the original vector field is tangent to this manifold

and belongs to its tangent space. In this case, there will be no problems with the projector. But in practice the manifolds of reduced
description are not invariant beyond oversimplified toy examples. Therefore, we come to the projection problem: how should we
project the original vector field onto the tangent space of an ‘‘ansatz manifold’’ in order to guarantee preservation of dissipativity:
if the time derivative of the Lyapunov function according to the original vector field is non-positive, then the time derivative of the
restriction of this Lyapunov function according to the projected vector field should be also non-positive.

This projection problem becomes interesting and non-trivial if we consider it in the universal settings:

• Let the vector field be a priory unknown; the only available a priory information is: it has a given Lyapunov function;
• Let the ansatz manifold be apriori unknown; the only available information is some regularity of intersections with the

Lyapunov function levels (the detail follow);
• Find a projector that transforms any apriori unknown vector field with a given Lyapunov function into a vector field on a

regular ansatz manifold equipped with a Lyapunov function, which is a simple restriction of the original Lyapunov function
on this ansatz manifold.

Such a universal approach arose from the most universal physical discipline – thermodynamics. The main example was the theory
of strong shock waves. The original (non-reduced) system was the general Boltzmann equation. In the middle of 20th century, Tamm
and Mott-Smith proposed a very simple and useful ansatz for analysis of strong shock waves. The distribution function of particle
speeds was presented as a linear combination of Maxwellian distribution at the ‘‘beginning’’ (𝑡 → −∞) and at the ‘‘end’’ (𝑡 → +∞).
The new variable of reduced description is just the coefficient of this combination. Then the Boltzmann equation was projected
onto this ansatz. The result was useful and sufficiently simple for analytic and numerical analysis (see, for example, the book [33]).
Nevertheless, the projected equation may violate the Second law of thermodynamics: in some situations, entropy decreases [34]. In
1977, M. Lampis proposed a projector for the Tamm–Mott-Smith ansatz that guaranteed preservation of dissipativity [35]. Later on,
Gorban and Karlin proposed a general thermodynamic theory for the Tamm–Mott-Smith ansatz and similar approximations [36].
In their work, the quasi-one dimensional nature of the Tamm–Mott-Smith ansatz was used. Some generalization were proposed in
1994 for solving the problem of instabilities of post-Navier–Stokes approximations [37]. In 2004, Gorban and Karlin published a
eneral construction of thermodynamic projector for more general ansatz manifolds [38] and applied it to Hilbert’s 6th problem for

analysis of hydrodynamic ansatz manifolds in kinetic theory [19].
There are three surprises:

1. The universal projector that preserves dissipativity does exist;
2. This projector is unique: for all other projectors there are counterexamples with non-monotone dynamic of Lyapunov function

along some trajectories of reduced systems;
3. This projector preserves not only the sign of the Lyapunov function time derivative (that is the initial requirement) but also

the exact value of this derivative. This is a rare case of a ‘‘free lunch’’.

In our work, we analyse the mathematical problem of preservation of dissipativity in general dynamical models with a given
Lyapunov function, give the explicit formula for the universal projector, and prove that it is unique. In Section 2 we give a rigorous
problem statement. In Section 3 the main theorem about universal projector is proven. In Section 4 we consider the model reduction
methods beyond manifolds. For this purpose, we introduce monotone trees and demonstrate how the results of the previous section
can be used for unambiguous projection of dissipative dynamics onto such trees. In Section 5 we discuss the results and the possible
irections of future work.
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2. Notations and formal problem statement

Let 𝑈 be an open convex subset of 𝑛-dimensional Euclidean space R𝑛. The apriori given Lyapunov function 𝐻 is given in 𝑈 .
ssume that:

• 𝐻 is twice-differentiable.
• 𝐻 is strongly convex in 𝑈 , that is, the second differential of 𝐻 , 𝐷2

𝑥(𝐻) is uniformly positive definite in 𝑈 : all its eigenvalues
𝜆 are positive and 𝜆 > 𝛼 > 0 for some 𝛼 for all 𝑥 ∈ 𝑈 .

In a coordinate system 𝑥1,… , 𝑥𝑛, the second differential is presented by the Hessian matrix

𝐷2
𝑥(𝐻) = 𝜕2𝐻

𝜕 𝑥𝑖𝜕 𝑥𝑗
.

An 𝑚-dimensional ansatz manifold 𝑀 is a twice-differentiable immersed 𝑚-dimensional submanifold in 𝑈 .
Because most of our problems are local, it is convenient to work with a coordinate chart of 𝑀 . It is an injective immersion
∶ 𝐵𝑚 → 𝑈 , where 𝐵𝑚 is an open convex subset of 𝑚-dimensional Euclidean space R𝑚. This means that 𝐹 is injective and the

differential of 𝐹 at each point 𝑝 ∈ 𝐵𝑚, 𝐷𝑝(𝐹 ), is an injective linear map from R𝑚 to R𝑛.
For given coordinate systems in spaces R𝑚 (𝑝1,… , 𝑝𝑛) and R𝑛 (𝑥1,… , 𝑥𝑛), the map 𝐹 is given by 𝑛 functions on 𝐵𝑚: 𝑥𝑖 =

𝑓𝑖(𝑝1,… , 𝑝𝑚) (𝑖 = 1,… , 𝑛).
The differential 𝐷𝑝(𝐹 ) is presented by the matrix of partial derivatives 𝜕 𝑓𝑖

𝜕 𝑝𝑗
|

|

|

|𝑝
.

𝐹 is immersion if and only if rank of 𝐷𝑝 is constant and equal to 𝑚: r ank (𝐷𝑝(𝐹 )) = 𝑚 for all 𝑝 ∈ 𝐵𝑚.
Of course, we can always assume that 𝐵𝑚 is an open 𝑚-dimensional ball. Nevertheless, a bit more general definition with open

convex sets may be useful for some examples.
There is no simple general local criterion for the injectivity of 𝐹 , but for some practical examples it can often be proved without

ifficulty. (For example, for the Tamm–Mott-Smith anzatz discussed above: If for two pairs of Maxwellians two linear combinations
of them with non-zero coefficients coincide, then these pairs coincide too because of linear independence of different Maxwellians.
This means injectivity of the Tamm–Mott-Smith ansatz.)

The tangent space to 𝑀 at a point 𝑥 = 𝐹 (𝑝) is the image of the differential 𝐷𝑝(𝐹 ): 𝑇 |𝐹 (𝑝)𝐹 (𝐵𝑚) = im𝐷𝑝(𝐹 ). In the coordinate
orm, it can be presented as a linear span of linear independent vectors of partial derivatives (columns of the matrix 𝜕 𝑓𝑖

𝜕 𝑝𝑗
|

|

|

|𝑝
):

𝑇𝐹 (𝑝) = span
{(

𝜕 𝑥1
𝜕 𝑝𝑖

,
𝜕 𝑥2
𝜕 𝑝𝑖

…
𝜕 𝑥𝑛
𝜕 𝑝𝑖

)

, 𝑖 = 1,… , 𝑚
}

.

The tangent space of 𝑈 at any point may be considered just as R𝑛. The first differential of 𝐻 in 𝑈 , 𝐷𝑥𝐻 , is a linear functional:
for each 𝑦 ∈ R𝑛

𝐷𝑥(𝐻)(𝑦) =
∑

𝑖

𝜕 𝐻
𝜕 𝑥𝑖

𝑦𝑖.

Restriction of 𝐻 on 𝑀 at point 𝑥 = 𝐹 (𝑝) is just the value of 𝐻 : 𝐻|𝑀 (𝐹 (𝑝)) = 𝐻(𝐹 (𝑝)). Differential of restriction of 𝐻 on 𝑀 at
oint 𝑥 = 𝐹 (𝑝) is restriction of the functional 𝐷𝑥(𝐻) on 𝑇𝐹 (𝑝). Formally, if a vector 𝑦 ∈ 𝑇𝐹 (𝑝), this means

𝑦 =
𝑚
∑

𝑖=1
𝑎𝑖

(

𝜕 𝑥1
𝜕 𝑝𝑖

,
𝜕 𝑥2
𝜕 𝑝𝑖

…
𝜕 𝑥𝑛
𝜕 𝑝𝑖

)

for some numbers 𝑎1,… , 𝑎𝑚. For this 𝑦,

𝐷𝑥(𝐻𝑀 )(𝑦) =
𝑚
∑

𝑖=1
𝑎𝑖

𝑛
∑

𝑗=1

𝜕 𝐻
𝜕 𝑥𝑗

𝜕 𝑥𝑗
𝜕 𝑝𝑖

.

If we transform the basis in 𝑇 |𝐹 (𝑝) to {𝑒1,… , 𝑒𝑚} then for the calculation of 𝐷𝑥(𝐻𝐿)(𝑦) for 𝑦 =
∑

𝑏𝑖𝑒𝑖 we should use representation
of 𝑒𝑖 in the old basis to find 𝐷𝑥(𝐻)(𝑒𝑖) and then calculate 𝐷𝑥(𝐻𝑀 )(𝑦) = ∑

𝑏𝑖𝐷𝑥(𝐻)(𝑒𝑖).
The second differential of 𝐻 induces a Riemannian metric on 𝑈 for which the Hessian of 𝐻 is the metric tensor. This is the

so-called Shahshahani metric [39]. The inner product associated with this metric in the tangent space at a point 𝑥 ∈ 𝑈 is defined as

⟨𝑦|𝑧⟩𝑥 = (𝑦, 𝐷2
𝑥(𝐻)𝑧),

or in the coordinate form

⟨𝑦|𝑧⟩𝑥 =
𝑛
∑

𝑖,𝑗=1
𝑦𝑖

𝜕2𝐻
𝜕 𝑥𝑖𝜕 𝑥𝑗

|

|

|

|

|𝑥
𝑧𝑗

Of course, the Shachshahani metric generated by the second differential of 𝐻|𝑀 is also defined on the submanifold 𝑀 . We use
notation ⟂

𝑥 for the orthogonal projectors of R𝑛 onto 𝑇𝑥(𝑀) in the Shahshahani metrics ⟨⋅|⋅⟩𝑥. These projectors do not solve the
main problem but are used in the solution.
3 
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Consider a vector field 𝑊 (𝑥) in 𝑈 . If it has Lyapunov function 𝐻 then the derivative of 𝐻 along 𝑊 (𝑥) is non-positive. In our
otations, it means that

𝐷𝑥(𝐻)(𝑊 (𝑥)) ≤ 0 for all 𝑥 ∈ 𝑈 , (1)

or in the coordinate form
∑

𝑖
𝑤𝑖(𝑥)

𝜕 𝐻
𝜕 𝑥𝑖

|

|

|

|𝑥
≤ 0 (2)

if 𝑤𝑖(𝑥) are the components of the vector field 𝑊 (𝑥).
Consider a vector field 𝑄(𝑥) ∈ 𝑇𝐹 (𝑝) defined at points 𝑥 = 𝐹 (𝑝) of the submanifold 𝑀 . Definition of the derivatives of 𝐻𝑀 along

his field is the same as (1), (2). Taking into account that 𝑥 ∈ 𝑀 and 𝐻𝑀 = 𝐻 on 𝑀 , we write

𝐷𝑥(𝐻𝑀 )(𝑄(𝑥)) = 𝐷𝑥(𝐻)(𝑄(𝑥)).

The problem is: For 𝑥 ∈ 𝑀 find projectors 𝑥 ∶ R𝑛 → 𝑇𝑥𝑀 such that for any dissipative vector field 𝑊 (𝑥) (1), (2) with Lyapunov
function 𝐻 the projected vector field 𝑄(𝑥) is also dissipative with the restriction of 𝐻 on 𝑇𝑥(𝑀), 𝐻𝑀 .

The projectors 𝑥 depend on point 𝑥 ∈ 𝑀 . They also depend on the tangent space 𝑇𝑥𝑀 . We require also that the yet unknown
field of projectors should be smooth. It is usually clear, for which manifold 𝑀 and tangent space 𝑇𝑥𝑀 a projector 𝑥 is build, and
we omit the cumbersome notation, but if it is necessary, we can use 𝑥,𝑀 for projector of R𝑛 onto 𝑇𝑥𝑀 .

3. Universal projector for submanifolds

3.1. Linear submanifolds, linear vector fields, and quadratic Lyapunov functions

Linear vector fields with quadratic Lyapunov functions and linear ansatz submanifold provide us with a simplified version of the
problem of dissipative projection and, at the same time, demonstrate how to use the Shahshahani metrics for the construction of
the projector.

Let 𝑈 = R𝑛 and 𝐻 be a positive definite quadratic form 𝐻(𝑥) = (𝑥, 𝐺 𝑥), where 𝐺 is a positively definite symmetric operator and
⋅, ⋅) is the standard inner product. We select the auxiliary (Shahshahani) inner product ⟨𝑦|𝑧⟩ = (𝑦, 𝐺 𝑧) = (𝐺 𝑦, 𝑧).

Consider a linear vector field 𝑄(𝑥) = 𝑄𝑥, where 𝑄 is a linear operator. It is well-known that this vector field has Lyapunov
functions 𝐻 if and only if the time derivative of 𝐻 along 𝑄 is non-positive: for all 𝑥 ∈ R𝑛

𝑑
𝑑 𝑡 (𝑥, 𝐺 𝑥) = (�̇�, 𝐺 𝑥) + (𝑥, 𝐺 ̇𝑥)

= (𝑄𝑥, 𝐺 𝑥) + (𝑥, 𝐺 𝑄𝑥) = (𝑥, (𝑄𝑇𝐺 + 𝐺 𝑄)𝑥) ≤ 0.
(3)

This means that the symmetric operator 𝑄𝑇𝐺 + 𝐺 𝑄 is negative semi-definite. The equivalent inequality is
⟨𝑄𝑥|𝑥⟩ ≤ 0 for all 𝑥 ∈ R𝑛. (4)

A linear ansatz manifold is just a linear subspace in R𝑛. In this case we can use for the tangent space 𝑇 (𝑀) the same notation 𝑀 .
 projector  ∶ R𝑛 → 𝑀 is a surjective linear operator (im = 𝑀) with the property 2 =  , or, which is the same, such a linear
perator  ∶ R𝑛 → 𝑀 that its restriction on 𝑀 is the unite operator: |𝑀 = id𝑀 .

For a given linear ansatz manifold 𝑀 , projector  ∶ R𝑛 → 𝑀 and a linear vector field 𝑄(𝑥) = 𝑄𝑥 on R𝑛, the projected vector
field on 𝑀 is 𝑄𝑥, 𝑥 ∈ 𝑀 . It is convenient to represent this projection in a more symmetric form: 𝑄𝑥 = 𝑄𝑥 for 𝑥 ∈ 𝑀 .

Theorem 1. Projector  ∶ R𝑛 → 𝑀 projects any linear vector field 𝑄𝑥 with quadratic Lyapunov function 𝐻(𝑥) = ⟨𝑥|𝑥⟩ into a linear vector
field on a linear subspace 𝑀 with the same quadratic Lyapunov function 𝐻𝑀 (𝑥) = ⟨𝑥|𝑥⟩ (for 𝑥 ∈ 𝑀) if and only if  is an orthogonal
projector ⟂ in the Shahshahani inner product ⟨𝑦|𝑧⟩.

Proof. Assume that the projector  is an orthogonal projector in the Shahshahani metric (image  is orthogonal to kernel ).
An equivalent condition is that projector  is a self-adjoint operator in this inner product: ⟨𝑦|𝑧⟩ = ⟨𝑦|𝑧⟩ for all 𝑦, 𝑧 ∈ R𝑛. Let
an operator 𝑄 satisfy the dissipativity condition (4). Then for its projection onto 𝑀 we get ⟨𝑄𝑥|𝑥⟩ = ⟨𝑄𝑥|𝑥⟩ because  is
elf-adjoint. This form is negative semi-definite because ⟨𝑄𝑦|𝑦⟩ ≤ 0 for all 𝑦 ∈ R𝑛.

Assume now that a projector  ∶ R𝑛 → 𝑀 is not an orthogonal projector in the Shahshahani metric. Then the orthogonal
omplement to 𝑀 = im does not coincide with the kernel of  and there exists such a vector 𝑦 ∈ R𝑛 that ⟨𝑦|𝑧⟩ = 0 for all 𝑧 ∈ 𝑀
ut 𝑃 𝑦 ≠ 0. Consider a one-parametric family 𝐴𝑎 of auxiliary rank one operators: for any 𝑥 ∈ R𝑛

𝐴𝑎𝑥 = −(𝑦 − 𝑎𝑦)⟨𝑦 − 𝑎𝑦|𝑥⟩.

These operators are negatively semi-definite: ⟨𝑥|𝐴𝑎𝑥⟩ = −⟨𝑥|𝑦 − 𝑎𝑦⟩2 ≤ 0. Calculate the projection of these operators onto 𝑀 .
ote that, for 𝑥 ∈ 𝑀 , 𝐴𝑎𝑥 = −(𝑦 − 𝑎𝑦)⟨𝑦 − 𝑎𝑦|𝑥⟩ = −(𝑦 − 𝑎𝑦)⟨𝑦|𝑥⟩ because ⟨𝑦|𝑥⟩ = 0. Projection of these vectors on 𝑀 gives
𝐴𝑎𝑥 = −(1 − 𝑎)𝑦⟨𝑦|𝑥⟩. For 𝑎 > 1 these operators are not negatively semi-definite: ⟨𝑥|𝐴𝑎𝑥⟩ = (𝑎 − 1)⟨𝑦|𝑥⟩2. □

Thus, for linear submanifolds (subspaces) and quadratic Lyapunov functions preservation of dissipativity in reduced systems
requires orthogonal projection in the Shahshahani metrics. The next step is the analysis of the problem near the equilibrium that is
he global minimizer of 𝐻 in 𝑈 .
4 



S.V. Stasenko and A.N. Kirdin

c

t
f
d

𝑥

𝑀
𝐷
r

Communications in Nonlinear Science and Numerical Simulation 142 (2025) 108553 
3.2. Extension of dissipative vector fields

Transition from local analysis (in the vicinity of a point or a compact) to global statements is a very common problem. In general
topology, continuation of a continuous function from a closed subset to the entire space is given by the Tietze–Urysohn–Brouwer
extension theorem. For differentiable functions, the Whitney extension theorem states that it is possible to extend a differentiable
function with given derivatives from a closed subset in R𝑛 to the whole space [40,41].

We have to extend a locally defined twice differentiable dissipative vector field to such a field in the entire 𝑈 . The idea is very
simple: we will use the classical theorems about extension of differentiable functions and ‘‘glue’’ the locally defined dissipative field
𝑄(𝑥) with the globally defined field g r ad𝐻 .

Theorem 2. Let 𝐾 be compactly contained in 𝑈 : 𝐾 ⋐ 𝑈 , and its 𝜀 neighbourhood 𝐾𝜀 = 𝐾 +𝜀𝐵𝑛 (where 𝐵𝑛 is the unite ball in R𝑛) is also
ompactly contained in 𝑈 . If 𝑄 is a dissipative vector field in 𝐾𝜀 then there exist a dissipative vector field 𝑄ext in 𝑈 such that 𝑄(𝑥) = 𝑄ext (𝑥)
for 𝑥 ∈ 𝐾.

Proof. According to the extension theorems for differentiable functions, there exists such an infinitely smooth function 𝑓𝐾 ,𝜀 on 𝑈
hat 𝑓𝐾 ,𝜀(𝑥) ≥ 0 in 𝑈 , 𝑓𝐾 ,𝜀(𝑥) = 1 for 𝑥 ∈ 𝐾 and 𝑓𝐾 ,𝜀(𝑥) = 0 for 𝑥 ∉ 𝐾𝜀. Define 𝑄∗(𝑥) = 𝑓𝐾 ,𝜀(𝑥)𝑄(𝑥) for 𝑥 ∈ 𝐾𝜀 and 𝑄∗(𝑥) = 0
or 𝑥 ∉ 𝐾𝜀. For any globally dissipative vector field 𝑊 in 𝑈 , the linear combination 𝑄ext (𝑥) = 𝑄∗(𝑥) + (1 − 𝑓𝐾 ,𝜀(𝑥))𝑊 is a globally
issipative vector field in 𝑈 . If 𝑥 ∈ 𝐾 then 𝑄ext (𝑥) = 𝑄(𝑥), and if 𝑥 ∉ 𝐾𝜀 then 𝑄ext (𝑥) = 𝑊 (𝑥). □

This theorem allows us to discuss locally dissipative vector fields and then extend the results to the entire 𝑈 . In particular, it
gives the possibility to extend Theorem 1 from exactly linear submanifolds, linear vector fields, and quadratic Lyapunov functions
to vicinities of equilibria with almost linear submanifolds, almost linear vector fields, and almost quadratic Lyapunov functions.

A special case is the extension of a dissipative vector field from a submanifold in 𝑈 to the entire 𝑈 . Further, we use the extension
of locally defined vector fields in the vicinity of a point 𝑥 ∈ 𝑀 . Let 𝑄 be a smooth dissipative vector field on 𝑀 in the 𝜀-vicinity of
, that is, 𝐷𝑦(𝐻𝑀 )(𝑄) ≤ 0 for 𝑦 ∈ 𝑀 and ‖𝑥 − 𝑦‖ < 𝜀 (𝜀 > 0).

Proposition 1.
1. If 𝐷𝑥(𝐻𝑀 )(𝑄(𝑥)) < 0 then there exists a dissipative vector field 𝑄ext in 𝑈 such that 𝑄(𝑦) = 𝑄ext (𝑦) for 𝑦 ∈ 𝑀 and ‖𝑥 − 𝑦‖ < 𝛿 for
some 𝛿 > 0.

2. If 𝑄(𝑥) = 0 but 𝐷𝑦(𝐻𝑀 )(𝑄(𝑦)) < −𝜆‖𝑥− 𝑦‖ for 𝑦 ∈ 𝑀 , ‖𝑥− 𝑦‖ < 𝜀 and some 𝜆 > 0, then there exists a dissipative vector field 𝑄ext

in 𝑈 such that 𝑄(𝑦) = 𝑄ext (𝑦) for 𝑦 ∈ 𝑀 and ‖𝑥 − 𝑦‖ < 𝛿 for some 𝛿 > 0.

Proof. Locally, in a small vicinity of 𝑥 in 𝑈 , we can introduce such a coordinate systems 𝑦 = (𝑦1,… , 𝑦𝑛) that 𝑀 is given by the
equations 𝑦𝑚+1 = ⋯ = 𝑦𝑛 = 0, where 𝑚 = dim𝑀 (‖𝑦 − 𝑥‖ < 𝜅, 𝑦 ∈ 𝑈 for some 𝜅 > 0). Locally, for ‖𝑦 − 𝑥‖ < 𝜅, (𝑦1,… , 𝑦𝑚) is a
coordinate system on 𝑀 . Let us use this coordinate system.

Let us prove statement 1. If 𝑄(𝑥) ≠ 0 then 𝑥 is not a critical point of 𝐻𝑀 on 𝑀 . Indeed, if 𝑥 is a critical point of 𝐻𝑀 on
then, because of the strong convexity of 𝐻 , 𝑥 is a point of local minimum of 𝐻𝑀 on 𝑀 , and 𝐷𝑥+𝛾 𝑧(𝐻𝑀 )(𝑄(𝑥 + 𝛾 𝑧)) > 0 and

𝑥−𝛾 𝑧(𝐻𝑀 )(𝑄(𝑥 − 𝛾 𝑧)) < 0 for some 𝑧 = (𝑧1,… , 𝑧𝑚, 0,… , 0) and sufficiently small 𝛾 > 0. Let us use the standard theorem about
ectification of vector fields (see, for example, [42,43]). In a small vicinity of 𝑥 we can transform the coordinate system (𝑦1,… , 𝑦𝑚)

on 𝑀 in such a way that 𝑄(𝑦) = (1, 0,… , 0) (𝑚− 1 zeros, 𝑦 ∈ 𝑀 , ‖𝑥− 𝑦‖ < 𝜈 for some 𝜈 < 0). This transformation gives, at the same
time, an extension of 𝑄(𝑦) onto a vicinity of 𝑥 in 𝑈 : 𝑄(𝑦) = (1, 0,… , 0) (𝑛 − 1 zeros, 𝑦 ∈ 𝑈 , ‖𝑥 − 𝑦‖ < 𝜍 for some 𝜍 > 0).

Thus, we found an extension of 𝑄 onto a vicinity of 𝑥 in 𝑈 . After that, we can apply Theorem 2. The first statement is proven.
Let us prove statement 2. If 𝑄(𝑥) = 0 then the used above simple version of rectification theorem is not applicable. For any

given sufficiently small (𝑦𝑚+1,… , 𝑦𝑛), the set {(𝑦1,… , 𝑦𝑚, 𝑦𝑚+1,… , 𝑦𝑛)} with variable 𝑦1,… , 𝑦𝑚 in a vicinity of 𝑥 is an 𝑚-dimensional
immersed submanifold. In the selected coordinate system, this submanifold is just a shift of a vicinity of 𝑥 in 𝑀 by vector
(0,… , 0, 𝑦𝑚+1,… , 𝑦𝑛). We use for the result of this shift the notation 𝑀(𝑦𝑚+1,… , 𝑦𝑛). In this notation, a sufficiently small vicinity of
𝑥 in 𝑀 is 𝑀(0,… , 0) (𝑛 − 𝑚 zeros). For convenience, put 𝑥 at the origin: 𝑥 = (0,… , 0) (𝑛 zeros).

According to the assumptions, 𝑄(𝑥) = 0, but 𝐷𝑦(𝐻𝑀 )(𝑄(𝑦)) < −𝜆‖𝑥 − 𝑦‖ for 𝑦 ∈ 𝑀 , ‖𝑥 − 𝑦‖ < 𝜀 and some 𝜆 > 0. Therefore 𝑥 is a
critical point of 𝐻𝑀 on 𝑀 . Due to the strong convexity of 𝐻 on 𝑈 , we can use the implicit function theorem and find the critical
point 𝑥∗(𝑦𝑚+1,… , 𝑦𝑛) of 𝐻𝑀(𝑦𝑚+1 ,…,𝑦𝑛) on 𝑀(𝑦𝑚+1,… , 𝑦𝑛), such that 𝑥∗(𝑦𝑚+1,… , 𝑦𝑛) is a smooth function and 𝑥∗(0,… , 0) = 𝑥.

Let us define the extended vector field in the vicinity of 𝑥 in 𝑈 (extension from dimension 𝑚 to dimension 𝑛):

𝑄𝑛(𝑦) = 𝑄(𝑦 − 𝑥∗(𝑦𝑚+1,… , 𝑦𝑛)).

For this vector field, 𝐷𝑦(𝐻)(𝑄(𝑦)) < −𝜆′‖𝑥 − 𝑦‖ for ‖𝑥 − 𝑦‖ < 𝜀′ and some 𝜆′ > 0, 𝜆′ < 𝜆, 𝜀′ < 𝜀. For the further extension to the
entire 𝑈 we use Theorem 2. The second statement is proven. □
5 
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3.3. Near equilibrium

Assume that 𝑥eq ∈ 𝑈 is the global minimizer of 𝐻 in 𝑈 . Each dissipative vector fields is zero at 𝑥eq ∈ 𝑈 . Therefore, there exist no
standard ‘‘pointwise’’ restriction on 𝑥eq : each projector projects zero into zero. Nevertheless, the dissipativity in the neighbourhood
f 𝑥eq ∈ 𝑈 defines 𝑥eq unambigously.

To simplify the notation, let us choose the origin at the equilibrium point: 𝑥eq = 0. notice that 𝐻(𝑥) = 1
2 ⟨𝑥|𝑥⟩0 + 𝑜(‖𝑥‖2). Near

he equilibrium, the linear functional 𝐷𝑥(𝐻)(𝑧) can be approximated as ⟨𝑥|𝑧⟩0:

|𝐷𝑥(𝐻)(𝑧) − ⟨𝑥|𝑧⟩0| < 𝑜(‖𝑥‖)‖𝑧‖.

Following Theorem 1, we can guess that 𝑥eq = ⟂
𝑥eq . To prove this guess, we have to consider projections in a vicinity of 𝑥eq

because, exactly at equilibrium, all dissipative vector fields vanish. Near 𝑥eq, projectors that preserve dissipativity are close to 𝑥eq .
The following theorem formalizes our guess.

Theorem 3. For preservation of dissipativity by differentiable projector field 𝑥, it is necessary that
𝑥 = ⟂

𝑥 + 𝑂(‖𝑥 − 𝑥eq‖). (5)

Proof. The equivalent formulation of this theorem is: 𝑥eq = ⟂
𝑥eq . At equilibrium, the projector is just an orthogonal projector in

the Shahshahani metrics. Recall that the Hessian of 𝐻 is strictly negative definite at any point 𝑥 ∈ 𝑈 .
Let us construct a proof by contradiction. Assume that 𝑀 is a manifold of reduced description and 0 ∈ 𝑀 . Let 0,𝑀 be not

an orthogonal projector in the Shahshahani inner product 0,𝑀 = ̃ ≠ ⟂
0 . The images of these projectors coincide with 𝑇0(𝑀).

Therefore, they should have different kernels: there exists such a vector 𝑦 ∈ R𝑛 that ⟨𝑦|𝑧⟩0 = 0 for all 𝑧 ∈ 𝑇0(𝑀) but ̃𝑦 ≠ 0, exactly
as in the proof of Theorem 1.

Consider a one-parametric family of auxiliary vector fields in the vicinity of the equilibrium:

𝐵𝑎(𝑥) = −(𝑥𝑦 − 𝑎𝑦)𝐷𝑥(𝐻)(𝑥𝑦 − 𝑎𝑦).

Here we assume that projectors 𝑥 project dissipative vector fields on R𝑛 into a dissipative vector field on 𝑇𝑥(𝑀) (in our simplified
otation, 𝑇𝑥(𝑀) = 𝑀). According to the problem statement, this field of projectors should be continuous and ‖𝑥 − 0‖ = 𝑂(‖𝑥‖).

These vector fields are dissipative:

𝐷𝑥(𝐻)(𝐵𝑎(𝑥)) = −(𝐷𝑥(𝐻)(𝑥𝑦 − 𝑎𝑦))2 ≤ 0.

Let us demonstrate that projection of 𝐵𝑎(𝑥) on 𝑀 is not dissipative. For 𝑥 ∈ 𝑀 , 𝑥𝐵𝑎(𝑥) = (𝑎 − 1)𝑥𝑦𝐷𝑥(𝐻)(𝑥𝑦 − 𝑎𝑦) and
𝐷𝑥𝐻(𝑦 − 𝑎𝑦) = ⟨𝑥|𝑥𝑦⟩0 + 𝑜(‖𝑥‖).

Therefore, for 𝑥 ∈ 𝑀 , the time derivative of 𝐻 according to the projected vector field is
𝐷𝑥(𝐻)(𝑥𝐵𝑎(𝑥)) = (𝑎 − 1)⟨𝑥|𝑥𝑦⟩

2
0 + 𝑜(‖𝑥‖2).

This expression is positive for 𝑎 > 1 and some sufficiently small 𝑥, for example, for 𝑥 = 𝜀𝑥𝑦 and sufficiently small 𝜀 > 0. In
these cases, the projected vector field is not dissipative despite the dissipativity of the original vector field in 𝑈 .

According to Theorem 2, vector fields dissipative in some vicinity of the equilibrium can be extended to dissipative vector fields
on the entire 𝑈 . Therefore, we proved that 𝑥eq = ⟂

𝑥eq and 𝑥 = ⟂
𝑥 + 𝑂(‖𝑥 − 𝑥eq‖) for projectors that preserve dissipativity. □

This theorem tells us that the difference between the projectors that preserve dissipativity of all dissipative vector fields and the
orthogonal projector (in the Shahshahani metrics) grows out of equilibrium not faster than 𝑂(‖𝑥 − 𝑥eq‖).

For linear submanifolds 𝐿 ⊂ R𝑛, Theorem 3 will be applied also to dissipative vector fields on 𝐿∩𝑈 of R𝑛 near minima of 𝐻 on
𝐿 ∩ 𝑈 without changes.

3.4. One-dimensional submanifolds

The orthogonal projectors in the Shahshahani metrics solve sometimes the problem of projection with preservation of dissipativ-
ty, but already simple example show that this is not the general solution of the problem. Already projections onto one-dimensional
anifolds (curves) require a different approach. Reduction to essentially one-dimensional cases is not an exotic and oversimplified

xample. The famous Tamm – Mott-Smith approximation leads to this problem.
Return to the general problem statement (Section 2). Let the manifold of the reduced description 𝑀 be one-dimensional (a curve).

Its tangent space at point 𝑥 ∈ 𝑀 is a one-dimensional subspace 𝑇𝑥(𝑀) ⊂ R𝑛. Select a normalized vector 𝑒𝑥 ∈ 𝑇𝑥(𝑀), ⟨𝑒𝑥|𝑒𝑥⟩ = 1. A
rojector  can be presented by two subspace: k er  and im under conditions that
k er  ∩ im = {0} and dim k er  + dim im = 𝑛 (6)

6 
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The image of 𝑥 is, obviously, 𝑇𝑥(𝑀). In this subsection, it is the straight line: 𝑇𝑥(𝑀) = {𝛼 𝑒𝑥|𝛼 ∈ 𝑅}, where 𝑒𝑥 is a basis vector
f 𝑇𝑥(𝑀). The following theorem gives us the kernel of 𝑃𝑥.

Theorem 4. Assume that the manifold of the reduced description 𝑀 is one-dimensional and 𝐷𝑥(𝐻)(𝑒𝑥) ≠ 0. Then for the preservation of
dissipativity in the projection for all dissipative vector fields it is necessary and sufficient that im𝑥 = 𝑇𝑥𝑀 and k er 𝑥 = k er𝐷𝑥(𝐻).

Proof. Let im𝑥 = 𝑇𝑥(𝑀) and k er 𝑥 = k er𝐷𝑥(𝐻). Any linear operator  with given one-dimensional image 𝑀𝑥 and kernel k er𝐷𝑥(𝐻)
an be presented as

𝑄 = 𝑎𝑒𝑥𝐷𝑥(𝐻)(𝑄)

with a real parameter 𝑎. For the projector 𝑥 this parameter can be defined using the projector property 2
𝑥 = 𝑥:

𝑎2𝑒𝑥(𝐷𝑥(𝐻)(𝑒𝑥))𝐷𝑥(𝐻)(𝑄) = 𝑎𝑒𝑥𝐷𝑥(𝐻)(𝑄).

Therefore, 𝑎 = (𝐷𝑥(𝐻)(𝑒𝑥))−1 and

𝑥𝑄 = 𝑒𝑥
𝐷𝑥(𝐻)(𝑄)
𝐷𝑥(𝐻)(𝑒𝑥)

. (7)

This is the projector with the given kernel and image.
The time derivative of 𝐻𝑀 along the projected vector field 𝑥𝑄 (7) is

𝐷𝑥(𝐻)(𝑥𝑄) = 𝐷𝑥(𝐻)(𝑒𝑥)
𝐷𝑥(𝐻)(𝑄)
𝐷𝑥(𝐻)(𝑒𝑥)

= 𝐷𝑥(𝐻)(𝑄).

We can see that the time derivative of 𝐻 does not change after dimensionality reduction with the projector 𝑥𝑄 (7). This is even more
than we were looking for: Preservation of the dissipativity assumes preservation of the sign of 𝑑 𝐻∕𝑑 𝑡, and here we see preservation
f the value.

All projectors onto 𝑇𝑥(𝑀) have the same image, 𝑇𝑥(𝑀), but the kernels might be different under conditions (6). Let us demonstrate
that all kernels of projector other than the null-space of the differential of 𝐻 , k er𝐷𝑥(𝐻), lead to the violation of dissipativity for
ome vector fields 𝑄 in projection onto 𝑇𝑥(𝑀).

Consider a projector ̃𝑥 ∶ R𝑚 → 𝑇𝑥(𝑀) that is different from 𝑥 given by formula (7). The general form of a projector on a
ne-dimensional subspace is ̃𝑥(𝑄) = 𝑒𝑥𝑙(𝑄), where 𝑙 is a linear functional, and 𝑙(𝑒𝑥) = 1 because of the projector condition 2 = 1.

Due to the projection of a vector field 𝑄 by the projector ̃𝑥, the time derivative of 𝐻𝑀 is 𝐷𝑥(𝐻)(𝑒𝑥)𝑙(𝑄). The preservation of
dissipativity requires that this time derivative is non-positive when the original dissipations, 𝐷𝑥(𝑄), is non-positive. This means that
the half-spaces in R𝑛 given by the inequalities {𝑦 ∈ R𝑛

|𝑙(𝑦) ≤ 0} and {𝑦 ∈ R𝑛
|𝐷𝑥(𝐻)(𝑦) ≤ 0} coincide. For two linear functionals this

is possible if and only if they are proportional with a positive factor. Hence, the preservation of dissipativity requires 𝑙 = 𝑎𝐷𝑥(𝐻),
𝑎 > 0, and the projector ̃ coincides with 𝑥 (7).

Thus, the requirement of preservation of dissipativity unambigously defines projector 𝑥 (7). Moreover, the preservation of the
sign of dissipation implies the preservation of the value of 𝑑 𝐻∕𝑑 𝑡 in the reduces system: 𝑑 𝐻∕𝑑 𝑡 = 𝑑 𝐻𝑀∕𝑑 𝑡. □

Informally, the proven construction of projector (7) for one-dimensional manifolds 𝑀 , can be characterized by choosing 𝐻𝑀 as
the internal coordinate ℎ on 𝑀 and defining the projector 𝑥 as follows: for a vector field 𝑊 (𝑥)

𝑑 ℎ
𝑑 𝑡 = 𝑑 𝐻

𝑑 𝑡 = 𝐷𝑥(𝑈 )(𝑊 (𝑥)).

Here on the left we see movement on 𝑀 due to the projected vector field (a reduced system), and on the right we see the time
derivative of 𝐻 due to the vector field 𝑊 in the original system.

Formula for one-dimensional projections (7) is important for applications, therefore we reproduce it in the coordinate form.
Let a one-dimensional manifold (a curve) be given by 𝑛 functions of one variable: 𝑥 = (𝑓1(𝑝),… , 𝑓𝑛(𝑝)). Here 𝑝 is a real variable

(parameter), and 𝑓𝑖 are the twice differentiable functions.

• For a given 𝑥 = (𝑓1(𝑝),… , 𝑓𝑛(𝑝)), 𝑒𝑥 is a vector of derivatives, 𝑒𝑥 = (𝑑 𝑓1(𝑝)∕𝑑 𝑝,… , 𝑑 𝑓𝑛(𝑝)∕𝑑 𝑝), and some of these derivatives
are non-zero.

• The linear functional 𝐷𝑥𝐻 is a linear function with coefficients 𝜕 𝐻∕𝜕 𝑥𝑖.
• The vector field 𝑄 is 𝑄 = (𝑞1,… , 𝑞𝑛).
• The value of the functional, 𝐷𝑥(𝐻)(𝑄) is

𝐷𝑥(𝐻)(𝑄) =
𝑛
∑

𝑖=1

𝜕 𝐻
𝜕 𝑥𝑖

𝑞𝑖.

• The value of the functional 𝐷𝑥(𝐻)(𝑒𝑥) is

𝐷𝑥(𝐻)(𝑒𝑥) =
𝑛
∑

𝑖=1

𝜕 𝐻
𝜕 𝑥𝑖

𝑑 𝑓𝑖
𝑑 𝑝 .
7 
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• The final formula (7) for the projector 𝑥 looks in coordinates as follows:

(𝑥𝑄)𝑖 =
𝑑 𝑓𝑖
𝑑 𝑝

∑𝑛
𝑗=1

𝜕 𝐻
𝜕 𝑥𝑗 𝑞𝑗

∑𝑛
𝑗=1

𝜕 𝐻
𝜕 𝑥𝑗

𝑑 𝑓𝑗
𝑑 𝑝

.

In particular, formula (7) and Theorem 4 explain the mathematical foundations of the results of Lampis [35] and Gorban and
Karlin [36] about the projector of the Boltzmann equation on the Tamm–Mott-Smith approximation in the theory of strong shock
waves.

3.5. General theorem about projector with preservation of dissipativity

The answer to the main question is a combination of constructions presented by Theorems 3 and 4.
Let 𝑀 ⊂ 𝑈 be an ansatz submanifold, 𝑥 ∈ 𝑀 , 𝑥 ≠ 𝑥eq. Assume the transversality condition: differential of 𝐻 at 𝑥 does not annuls

he tangent space 𝑇𝑥(𝑀). This means that 𝑥 is not a critical point of 𝐻𝑀 . We are looking for projectors 𝑥 ∶ R𝑛 → 𝑇𝑥(𝑀) that project
any dissipative vector field 𝑄 (𝐷𝑥(𝐻)(𝑄) ≤ 0) into a dissipative vector field on 𝑀 (𝐷𝑥(𝐻𝑀 )(𝑥(𝑄)) ≤ 0). We will find the necessary
conditions, prove that these conditions define unique projector, and demonstrate that this projector transforms any dissipative vector
fields on 𝑈 into a dissipative vector fields on 𝑀 .

Consider the set of vectors 𝑄𝐷(𝑥) = {𝑄(𝑥)}, where 𝑄 is a dissipative vector field on 𝑈 . It includes the open half-space
{𝑄|𝐷𝑥(𝐻)(𝑄) < 0} and belongs to the closed half-space {𝑄|𝐷𝑥(𝐻)(𝑄) ≤ 0}:

{𝑄|𝐷𝑥(𝐻)(𝑄) < 0} ⊂ 𝑄𝐷(𝑥) ⊂ {𝑄|𝐷𝑥(𝐻)(𝑄) ≤ 0}

The second inclusion coincides with the dissipativity condition: the derivative of 𝐻 along 𝐻 is non-positive. For the first inclusion
we have to use Proposition 1. Use any local coordinate system in 𝑈 near 𝑥 and define a constant vector field 𝑄(𝑦) = 𝑄(𝑥) in a small
vicinity of 𝑥. If this vicinity is sufficiently small, then there 𝐷𝑦(𝐻)(𝑄(𝑦)) < 0. Use the extension Theorem 2 to extend this locally
efined dissipative vector field to the entire 𝑈 . The first inclusion is proven.

A similar statement is valid for vector fields on 𝑀 . Consider the set of vectors 𝑄𝐷 ,𝑀 (𝑥) = 𝑄(𝑥), where 𝑄 is a dissipative vector
ield on 𝑀 . It includes the open half-space {𝑄|𝐷𝑥(𝐻𝑀 )(𝑄) < 0} and belongs to the closed half-space {𝑄|𝐷𝑥(𝐻𝑀 )(𝑄) ≤ 0},

{𝑄|𝐷𝑥(𝐻𝑀 )(𝑄) < 0} ⊂ 𝑄𝐷(𝑥) ⊂ {𝑄|𝐷𝑥(𝐻𝑀 )(𝑄) ≤ 0},

where all derivatives are calculated on 𝑀 .

Lemma 1. Projector 𝑥 projects the closed half-space {𝑄|𝐷𝑥(𝐻)(𝑄) ≤ 0} in R𝑛 onto the closed half-space {𝑄|𝐷𝑥(𝐻𝑀 )(𝑄) ≤ 0} in 𝑇𝑥(𝑀):

𝑥({𝑄|𝐷𝑥(𝐻)(𝑄) ≤ 0}) = {𝑄|𝐷𝑥(𝐻𝑀 )(𝑄) ≤ 0} (8)

Proof. According to Proposition 1, each vector field on 𝑀 that satisfies the inequality 𝐷𝑥(𝐻𝑀 )(𝑄) < 0 can be extended from a
vicinity of 𝑥 on 𝑀 into a dissipative vector field in the entire 𝑈 . The projection of this set of extensions is again 𝑄𝐷 ,𝑀 (𝑥). Therefore,
rojection of the half-space {𝑄|𝐷𝑥(𝐻)(𝑄) ≤ 0} by 𝑥 should coincide with the half-space {𝑄|𝐷𝑥(𝐻𝑀 )(𝑄) ≤ 0}. Indeed, the inclusion

𝑥({𝑄|𝐷𝑥(𝐻)(𝑄) ≤ 0}) ⊆ {𝑄|𝐷𝑥(𝐻𝑀 )(𝑄) ≤ 0}

holds, because for each dissipative vector field 𝑊 (𝑥), its projection on 𝑇𝑥(𝑀) should be also dissipative. The inclusion

{𝑄|𝐷𝑥(𝐻𝑀 )(𝑄)} < 0} ⊆ 𝑥({𝑄|𝐷𝑥(𝐻)(𝑄) < 0})

holds because each vector 𝑉 of the open half-space {𝑄|𝐷𝑥(𝐻𝑀 )(𝑄)} can be extended to the dissipative vector field on 𝑈 . The value
of this field at point 𝑥 is again 𝑉 ∈ 𝑇𝑥(𝑀) and it projection 𝑥𝑉 = 𝑉 . The inclusions for the closed half-spaces follow from the
proven inclusions for the open half-spaces and continuity of projectors (finite-dimensional linear operators). □

This lemma also gives the following equality

Lemma 2.
𝑥({𝑄|𝐷𝑥(𝐻)(𝑄) = 0}) = {𝑉 |𝐷𝑥(𝐻𝑀 )(𝑉 ) = 0} (9)

Proof. Indeed, if 𝐷𝑥(𝐻)(𝑄) = 0 then 𝐷𝑥(𝐻)(−𝑄) = 0 and projections of both vectors 𝑄 and −𝑄 belong to the closed half-space
𝑄|𝐷𝑥(𝐻)(𝑄)} ≤ 0}. Assume that 𝐷𝑥(𝐻𝑀 )(𝑥(𝑄)) < 0. then 𝐷𝑥(𝐻𝑀 )(𝑥(−𝑄)) > 0 and 𝑥(−𝑄) ∉ {𝑄|𝐷𝑥(𝐻𝑀 )(𝑄)} < 0}. This

contradiction with (8) proves the inclusion.

𝑥({𝑄|𝐷𝑥(𝐻)(𝑄) = 0}) ⊆ {𝑉 |𝐷𝑥(𝐻𝑀 )(𝑉 ) = 0}.
Another inclusion
8 



S.V. Stasenko and A.N. Kirdin

m
k
n
𝐷

i

c

s

Communications in Nonlinear Science and Numerical Simulation 142 (2025) 108553 
{𝑉 |𝐷𝑥(𝐻𝑀 )(𝑉 ) = 0} ⊆ 𝑥({𝑄|𝐷𝑥(𝐻)(𝑄) = 0})
is satisfied because {𝑉 |𝐷𝑥(𝐻𝑀 )(𝑉 ) = 0} ⊂ {𝑄|𝐷𝑥(𝐻)(𝑄) = 0}. □

On the subspace k er𝐷𝑥(𝐻) = {𝑄|𝐷𝑥(𝐻)(𝑄) = 0} the projector 𝑥 acts as an orthogonal projector in the Shahshahani inner
product.

Lemma 3. Restriction 𝑥 onto k er𝐷𝑥(𝐻) is an orthogonal projector in the Shahshahani inner product ⟨⋅|⋅⟩𝑥:
⟂ ∶ k er𝐷𝑥(𝐻) → k er𝐷𝑥(𝐻𝑀 )

Proof. Consider restriction of 𝐻 onto the intersection of hyperplane 𝑥+ k er𝐷𝑥(𝐻) with 𝑈 . On 𝑈 ∩ (𝑥+ k er𝐷𝑥(𝐻)) point 𝑥 is a global
inimizer of 𝐻 . Similarly, point 𝑥 is a global minimizer of 𝐻 on 𝑈 ∩ (𝑥+ k er𝐷𝑥(𝐻𝑀 )). Notice that (𝑈 ∩ (𝑥+ k er𝐷𝑥(𝐻𝑀 ))) ⊂ (𝑈 ∩ (𝑥+
 er𝐷𝑥(𝐻))). For projections of dissipative vector fields in 𝑈 ∩ (𝑥 + k er𝐷𝑥(𝐻)) into dissipative vector fields in 𝑈 ∩ (𝑥 + k er𝐷𝑥(𝐻𝑀 ))
ear point 𝑥 we can use Theorem 3. According to this theorem, the restriction of 𝑥 on k er𝐷𝑥(𝐻) is an orthogonal projector onto
𝑥(𝐻𝑀 ) in the Shahshahani metrics. □

Finally, we approach a linear algebra problem: Let 𝐿 be an Euclidean space with inner product ⟨⋅|⋅⟩. Assume that 𝑊 is a subspace
n 𝐿, 𝑙 ≠ 0 is a linear functional in 𝐿, 𝑊 ⊄ k er 𝑙,  ∶ 𝐿 → 𝑊 is a projector, im = 𝑊 , ({𝑦 ∈ 𝐿|𝑙(𝑦) ≤ 0}) = {𝑧 ∈ 𝑊 |𝑙(𝑧) ≤ 0}, and

the restriction of  on k er 𝑙, |k er 𝑙 ∶ k er 𝑙 → (k er 𝑙 ∩𝑊 ) is an orthogonal projector in the inner product ⟨⋅|⋅⟩. Demonstrate that these
onditions define  unambiguously and find an explicit construction of this projector.

Let 𝐿0 = k er 𝑙 and 𝑊0 = 𝑊 ∩ k er 𝑙. Find a unit normal vector 𝜈 to 𝑊0. Space 𝐿 can be presented as an orthogonal sum of three
ubspaces:

𝐿 = 𝑊0 ⊕ {𝑦 ∈ 𝐿0|𝑦 ⟂ 𝑊0}⊕ {𝛼 𝜈|𝛼 ∈ 𝑅}.

Subspace 𝑊 can be presented as an orthogonal sum of two subspaces:

𝑊 = 𝑊0 ⊕ {𝛼 𝜈𝑊 |𝛼 ∈ 𝑅},

where 𝜈𝑊 ∈ 𝑊 is the unit normal vector to 𝑊0 in 𝑊 . Note, that in a general situation 𝜈𝑊 ≠ 𝜈. For convenience, we choose such
orientation of normal vectors that 𝑙(𝜈) < 0 and 𝑙(𝜈𝑊 ) < 0.

If a vector 𝑧 ∈ 𝐿 is a orthogonal sum

𝑧 = 𝑧0 ⊕ 𝑧⟂0 ⊕ 𝜁 𝜈 (10)

(𝑧0 ∈ 𝑊0, 𝑧⟂0 ∈ {𝑦 ∈ 𝐿0|𝑦 ⟂ 𝑊0} and 𝜁 ∈ 𝑅), then its projection onto 𝑊 should have a form:

𝑧 = 𝑧0 ⊕ 𝛽 𝜁 𝜈𝑊 ,

where 𝛽 is a real number. This coefficient is defined by the condition (𝜈𝑊 ) = 𝜈𝑊 because projector  is the identity operator on
its image.

Vector 𝜈𝑊 can be represented in 𝐿 as an orthogonal sum: 𝜈𝑊 = 𝜈∥𝑊 ⊕ 𝜈⟂𝑊 , where 𝜈⟂𝑊 = ⟨𝜈𝑊 |𝜈⟩𝜈 and 𝜈∥𝑊 = 𝜈𝑊 − 𝜈⟂𝑊 . 𝜈∥𝑊 ∈ 𝑊0
because ⟨𝜈∥𝑊 |𝜈⟩ = 0. Therefore, 𝜈𝑊 = 𝛽⟨𝜈𝑊 |𝜈⟩𝜈𝑊 .

The condition 𝜈𝑊 = 𝜈𝑊 gives: 𝛽⟨𝜈𝑊 |𝜈⟩ = 1 and

𝛽 = 1
⟨𝜈𝑊 |𝜈⟩

.

Finally, the projector  is unambiguously defined and for the projection of the orthogonal sum (10) we obtain:

(𝑧0 ⊕ 𝑧⟂0 ⊕ 𝜁 𝜈) = 𝑧0 ⊕
𝜁 𝜈𝑊

⟨𝜈𝑊 |𝜈⟩
(11)

Note that this projector preserves the value of 𝑙(𝑧). First of all,

𝑙(𝜈𝑊 ) = 𝑙(𝜈⟂𝑊 ) = ⟨𝜈𝑊 |𝜈⟩𝑙(𝜈)

because 𝜈∥𝑊 ∈ k er 𝑙. Note that 𝑙(𝑧0 ⊕ 𝑧⟂0 ⊕ 𝜁 𝜈) = 𝜁 𝑙(𝜈). Therefore

𝑙((𝑧0 ⊕ 𝑧⟂0 ⊕ 𝜁 𝜈)) = 𝑙
(

𝑧0 ⊕
𝜁 𝜈𝑊

⟨𝜈𝑊 |𝜈⟩

)

= 𝜁 𝑙(𝜈) = 𝑙(𝑧0 ⊕ 𝑧⟂0 ⊕ 𝜁 𝜈).

Thus, we required the preservation of the sign of 𝑙(𝑧) and obtained the preservation of its value.
Lemmas 1, 2 and 3 together with formula (11) prove the following theorem. Let 𝑥 ∈ 𝑈 be a non-critical point of 𝐻 . Assume

that 𝑀 ⊂ 𝑈 is a smooth immersed ansatz manifold, 𝑥 ∈ 𝑀 , and the transversality condition holds: 𝑇𝑥(𝑀) ⊄ k er𝐷𝑥𝐻 (that is, 𝑀 is
not tangent to the level set of 𝐻 at point 𝑥). Let us use the notations 𝐿0 = k er𝐷𝑥𝐻 and 𝑊0 = 𝑇𝑥(𝑀) ∩𝐿0. We use the Shahshahani
inner product ⟨⋅|⋅⟩𝑥. Find unit normal vectors 𝜈 for 𝐿0 and 𝜈𝑊 ∈ 𝑇𝑥(𝑀) for 𝑊0. For most applications, it is convenient to select the
‘‘antigradient’’ orientations of these normal vectors: 𝐷𝑥(𝐻)(𝜈) < 0 and 𝐷𝑥(𝐻𝑀 )(𝜈𝑊 ) < 0. Represent 𝐿0 in the form of the orthogonal
sum: 𝐿 = 𝑊 ⊕ {𝑦 ∈ 𝐿 |𝑦 ⟂ 𝑊 }. Each vector 𝑄 ∈ R𝑛 can be represented as an orthogonal sum: 𝑄 = 𝑄 ⊕ 𝑄⟂ ⊕ 𝜁 𝜈.
0 0 0 0 0 0
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Theorem 5. Projector field 𝑥 that solves the problem of dimensionality reduction with preservation of dissipativity acts as follows:
𝑥(𝑄) = 𝑄0 ⊕

𝜁 𝜈𝑊
⟨𝜈𝑊 |𝜈⟩

□ (12)

The applications of Theorem 5 are the same for all problems of dimension reduction:

• Find Hessian of 𝐻 and define the Shahshahani inner product ⟨⋅|⋅⟩𝑥.
• Define the unit normal vector 𝜈 = 𝜈(𝑥) to 𝐿0 = k er𝐷𝑥(𝐻(𝑥)). For each 𝑥 ∈ 𝑈 this vector is the normalized antigradient 𝐻 in

the inner product ⟨⋅|⋅⟩𝑥: 𝜈(𝑥) = − g r ad𝑥𝐻(𝑥)
‖g r ad𝑥𝐻(𝑥)‖ .

• For a given ansatz manifold 𝑀 and any 𝑥 ∈ 𝑀 find the unit normal vector 𝜈𝑊 = 𝜈𝑊 (𝑥) ∈ 𝑇𝑥(𝑀) to the subspace
𝑊0 = 𝑇𝑥(𝑀) ∩ k er𝐷𝑥(𝐻𝑀 ). For each 𝑥 ∈ 𝑀 this vector is the normalized antigradient 𝐻𝑀 in the restriction of the inner
product ⟨⋅|⋅⟩𝑥 onto 𝑇𝑥(𝑀): 𝜈𝑊 (𝑥) = − g r ad𝑥𝐻𝑀 (𝑥)

‖g r ad𝑥𝐻𝑀 (𝑥)‖ .

• Find the orthogonal decomposition 𝐿0 = 𝑊0 ⊕ {𝑦 ∈ 𝐿0|𝑦 ⟂ 𝑊0}.
• Use the projector (12) for any dissipative vector field.

The only computationally expensive task in high dimensionality may be the orthogonal decomposition for a given ansatz
manifold. Calculation of gradients requires several comments. Gradient of a function in a Euclidean space is the Riesz representation
of its differential and depends on the inner product. By definition, for the Shahshahani inner product ⟨⋅|⋅⟩𝑥, 𝐷𝑥𝐻(𝑥)(𝑄) =
g r ad𝑥𝐻(𝑥), 𝑄⟩𝑥. Similarly, 𝐷𝑥𝐻𝑀 (𝑥)(𝑄) = ⟨g r ad𝑥𝐻𝑀 (𝑥), 𝑄⟩𝑥, but for g r ad𝑥𝐻𝑀 (𝑥) all calculations are performed in the space 𝑇𝑥(𝑀)
nd the vector of gradient belongs to this space. In general, g r ad𝑥𝐻𝑀 (𝑥) ≠ g r ad𝑥𝐻(𝑥). The standard coordinate representation of the
radient as the vector of partial derivatives is valid only in the orthonormal basis in the Shahshahani inner product. It may be worth
entioning that the antigradient in the Shahshahani inner product is the direction of descent in Newton’s method for minimizing

a function. Indeed, let 𝑒𝑥 be a gradient 𝐻(𝑥) at point 𝑥 ∈ 𝑈 with respect to the inner product ⟨⋅|⋅⟩𝑥. Let us use the initial (standard)
oordinates in R𝑛. Recall that ⟨𝑦|𝑧⟩𝑥 = (𝑦,Hes(𝐻)𝑧), where Hes(𝐻) is the Hessian matrix of second-order partial derivatives of 𝐻
nd (𝑦, 𝑧) = ∑

𝑦𝑖𝑧𝑖 is the standard inner product in R𝑛. The gradient vector 𝑒𝑥 is defined by equations:
𝑛
∑

𝑖=1

𝜕 𝐻
𝜕 𝑥𝑖

𝑄𝑖 =
𝑛
∑

𝑖=1
𝑄𝑖

( 𝑛
∑

𝑗=1
(Hes𝑥(𝐻))𝑖𝑗 (𝑒𝑥)𝑗

)

for all 𝑄.

Vectors 𝑄 can be excluded from these equations and we obtain

∇𝑥𝐻 = Hes𝑥(𝐻)𝑒𝑥; 𝑒𝑥 = (Hes𝑥(𝐻))−1∇𝑥𝐻 ,
where ∇𝑥𝐻 is the vector of partial derivatives of 𝐻 in the initial coordinate system. Finally, 𝜈 in the definition of projector (12) is:

𝜈 = − 𝑒𝑥
√

⟨𝑒𝑥|𝑒𝑥⟩𝑥
.

The similar calculations in an internal coordinate system on an ansatz manifold 𝑀 give us the unit normal vector to k er𝐷𝑥𝐻𝑀 (𝑥),
𝜈𝑊 ∈ 𝑇𝑥(𝑀).

For convenience, in the next subsection we collect the most popular functions 𝐻(𝑥) and their Hessian matrices.

3.6. Shahshahani inner products and gradients for several popular divergences

Many of the applied Lyapunov function are particular cases of the following family:

𝐻(𝑥) =
∑

𝑖
𝑥eq𝑖 𝑓

(

𝑥𝑖
𝑥eq𝑖

)

, (13)

where 𝑓 is a convex function on the positive semi-axis.
These functions were introduced by Rényi [44] in the same work, where he introduced the Rényi entropy. He proved that they

are Lyapunov functions for Markov kinetics. It is noteworthy that the function 𝐻(𝑥) (13) depends only on the current value of
𝑥 and on the equilibrium value 𝑥eq, and does not depend on the kinetic coefficients, which are usually not as well known as the
equilibrium. There exist no other Lyapunov functions for the Markov kinetics with this property (independence of kinetic constants).
This characterization of 𝐻(𝑥) was proven by P. Gorban in 2003 [45] and then independently by S.-I. Amari in 2009 [46]. These
functions were also rediscovered by Morimoto [47] and studied further by Csiszar [48]. They are known as 𝑓 -divergences or the
Csiszar-Morimoto relative entropies.

The derivatives of the 𝑓 -divergences (13) are

𝜕 𝐻
𝜕 𝑥𝑖

= 𝑓 ′

(

𝑥𝑖
𝑥eq𝑖

)

,

where 𝑓 ′ is the derivative of 𝑓 .
The Hessian matrix Hes𝑥(𝐻) is

𝜕2𝐻 = 𝛿𝑖𝑗
1
eq 𝑓

′′

(

𝑥𝑖
eq

)

, (14)

𝜕 𝑥𝑖𝜕 𝑥𝑗 𝑥𝑖 𝑥𝑖

10 
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where 𝑓 ′′ is the second derivative of 𝑓 . This matrix is diagonal, therefore, the corresponding Shahshahani inner product is very
simple:

⟨𝑧|𝑦⟩𝑥 =
∑

𝑖
𝑓 ′′

(

𝑥𝑖
𝑥eq𝑖

)

𝑧𝑖𝑦𝑖
𝑥eq𝑖

.

The gradient of 𝐻(𝑥) with respect to this inner product is a vector 𝑒𝑥 with components

𝑒𝑥𝑖 = 𝑥eq𝑖

𝑓 ′
(

𝑥𝑖
𝑥eq𝑖

)

𝑓 ′′
(

𝑥𝑖
𝑥eq𝑖

) .

If 𝑓 (𝑧) = 𝑧 ln 𝑧 then the 𝑓 -divergence (13) is the Kullback–Leibler divergence very popular both in kinetics and machine learning:

𝐻(𝑥) =
∑

𝑖
𝑥𝑖 ln

(

𝑥𝑖
𝑥eq𝑖

)

.

For this function,

𝜕 𝐻
𝜕 𝑥𝑖

= 1 + ln
(

𝑥𝑖
𝑥eq𝑖

)

, 𝜕2𝐻
𝜕 𝑥𝑖𝜕 𝑥𝑗

=
𝛿𝑖𝑗
𝑥𝑖

, ⟨𝑧|𝑦⟩𝑥 =
∑

𝑖

𝑧𝑖𝑦𝑖
𝑥𝑖

, 𝑒𝑥𝑖 = 𝑥𝑖

(

1 + ln
(

𝑥𝑖
𝑥eq𝑖

))

.

If 𝑓 (𝑧) = 𝑧(ln 𝑧 − 1) then the formulas become even simpler:

𝐻(𝑥) =
∑

𝑖
𝑥𝑖

(

ln

(

𝑥𝑖
𝑥eq𝑖

)

− 1
)

.

𝜕 𝐻
𝜕 𝑥𝑖

= ln
(

𝑥𝑖
𝑥eq𝑖

)

, 𝜕2𝐻
𝜕 𝑥𝑖𝜕 𝑥𝑗

=
𝛿𝑖𝑗
𝑥𝑖

, ⟨𝑧|𝑦⟩𝑥 =
∑

𝑖

𝑧𝑖𝑦𝑖
𝑥𝑖

, 𝑒𝑥𝑖 = 𝑥𝑖 ln

(

𝑥𝑖
𝑥eq𝑖

)

.

If 𝑓 (𝑧) = − ln 𝑧 then 𝐻(𝑥) is the relative Burg entropy:

𝐻(𝑥) = −
∑

𝑖
𝑥eq𝑖 ln

(

𝑥𝑖
𝑥eq𝑖

)

.

𝜕 𝐻
𝜕 𝑥𝑖

= −𝑥eq𝑖
𝑥𝑖

, 𝜕2𝐻
𝜕 𝑥𝑖𝜕 𝑥𝑗

= 𝛿𝑖𝑗
𝑥eq𝑖
𝑥2𝑖

, ⟨𝑧|𝑦⟩𝑥 =
∑

𝑖

𝑧𝑖𝑦𝑖𝑥
eq
𝑖

𝑥2𝑖
, 𝑒𝑥𝑖 = −𝑥𝑖.

For all other examples of 𝑓 -divergences calculations are essentially the same. Calculations on an arbitrary subspace requires
more efforts with orthogonalization, at least, partial.

4. Beyond manifolds: monotone trees

Approximating data sets or dynamical systems by projection onto a manifold often seems suboptimal, since a relatively high-
dimensional approximation may contain too much ‘‘air’’ (empty or nearly empty space irrelevant to the applied problem), while a

anifold of lower dimension and limited curvature may lose the quality of the approximation.
The idea of data approximation by ‘‘principal graphs and trees’’ is well-elaborated and there exists an open source software for

se in many areas [49], from single cell omics in bioinformatics to dynamic phenotyping of diseases in clinical medicine and even
in astronomy for analysis of distributions of galaxies. Nevertheless, projection of dynamics onto principal graphs and trees remains
n open problem [8,50].

In this section, we present a solution of the problem of projection dynamics onto trees with preservation of dissipativity. Trees
n the graph-theoretical sense may be also viewed as topological spaces by representation of each edge as an arc. A tree is smoothly
mmersed in U if each arc is a smooth curve. In a tree, each two nodes are connected by a unique path that consists of arcs (edges).
 tree is monotone with respect to function 𝐻 if 𝐻 is a strongly monotone functions along each of these paths and its derivative
long edges does not vanish.

The problem of preservation of dissipativity for projection of any dissipative vector field on a monotone tree is de-facto solved
n Section 3.4. We should just apply Theorem 4 to the paths on the tree. Technically, the result is very simple. Let 𝑇 ⊂ 𝑈 be a

monotone tree. Find the node 𝑥∗ ∈ 𝑇 with minimal value of 𝐻 . This node is unique because each two nodes are connected by the
unique path and 𝐻 is a strongly monotone function along these paths. Let 𝑥 be a point on the tree and the line 𝐿 be a path in 𝑇
between 𝑥 and 𝑥∗. Select 𝐻 as an internal coordinate on the 𝐿 (𝐻𝐿). For every dissipative vector field 𝑄 define motion on this path
by the condition

𝑑 𝐻𝐿(𝑥)
𝑑 𝑡 = 𝐷𝑥(𝐻(𝑥))(𝑄).

According to Theorem 4, this definition gives a unique projector of any dissipative vector fields into dissipative motion along the
path 𝐿. Note that the path 𝐿 is piecewise smooth, therefore we have to apply Theorem 4 to arcs and then glue motions in nodes.
11 
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For non-monotonic trees, the problem of flow distribution at bifurcation points arises. This problem is stated as important for
applied work [8,50]. Here we cannot even hypothesize about a deterministic solution. Perhaps, to reduce dissipative systems to
non-monotonic graphs, it is necessary to introduce stochastic models with randomized flow distributions at branching points.

5. Conclusion and outlook

We have presented a detailed solution to the projection problem for the reduction of a dissipative system with incomplete
information about vector fields. For this purpose, we have found projectors that project any dissipative vector field into a dissipative
vector field on ansatz manifolds. This work is a further mathematical development of the previous work on physical and chemical
kinetics. The general form of projectors is universal and can be used in any field to reduce dimensionality when there is no detailed
knowledge of the vector field. Further refinement of the model can be performed after reducing the dimension. There are many
possible applications, from control and nonequilibrium thermodynamics to machine learning.

The answer to the problem is presented in Theorem 5. It is simple and transparent. Calculations of the gradient of 𝐻 with
espect to the Shahshahani inner product ⟨⋅|⋅⟩𝑥 in R𝑛 are straightforward for many popular Lyapunov functions that are useful
oth in machine learning and in nonequilibrium thermodynamics (Section 3.6). For an ansatz manifold of small dimension or
odimension, calculations are also simple (see, for example, Section 3.4). Nevertheless, calculations of projections for an ansatz

manifold of intermediate dimension (neither small dimension, nor small codimension) require additional effort for the development
of optimized algorithms.

We have to stress that for some applied problems simpler projectors are used with success, for example, just an orthogonal
projector in the Shahshahani inner product. In particular, if the ansatz manifold is invariant then any projector on its tangent space

ill preserve dissipativity. If the ansatz manifold is ‘‘almost invariant’’ with small normal component of the vector field? then the
hoice if projector may be also non-unique.

An important observation was made by Roberts [51]: He studied deformation of almost invariant systems and proved that
approximate invariant manifolds of a system are exact invariant manifolds of a specially constructed approximate system. This
theorem extends the area of application of exactly invariant manifolds. Nevertheless, beyond invariant and almost invariant
manifolds, the choice of projector is unique and other projectors may disrupt the dissipation.

Reduces dynamics beyond manifolds is very attractive in many applications. The algorithms for data approximation by graphs
nd, in particular, by trees are well developed and the open source software is available (for its description and further references
e refer to [49]). Despite of these successes, the problem of projection of dynamics onto ansatzes that are not manifolds has
een repeatedly described as important in applications and unsolved [8,50]. Here we have taken the first step towards solving

this problem: we have introduced monotone trees and found a projection operator that projects any dissipative dynamics in space
nto the dissipative dynamics on the tree. The problem of projection onto non-monotonic trees and graphs requires a change in the

framework of consideration: it seems necessary to consider not deterministic dynamics, but dynamics with stochastic redistribution
of the phase flow at bifurcation points. Stochastic modelling is beyond the scope of this article, but is certainly the first task on the
‘‘to do’’ list.

Finally, let us repeat the main message of the paper: the projection of dissipative dynamics with preservation of dissipativity
requires a special design of the projector. Surprisingly, a universal projector exists, and it is unique.
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