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Abstract: Background: Respiratory viral infections (RVIs) exhibit seasonal patterns influenced by
biological, ecological, and climatic factors. Weather variables such as temperature, humidity, and wind
impact the transmission of droplet-borne viruses, potentially affecting disease severity. However,
the role of climate in predicting complications in pediatric RVIs remains unclear, particularly in the
context of climate-change-driven extreme weather events. Methods: This retrospective cohort study
analyzed 1610 hospitalization records of children (0–18 years) with lower respiratory tract infections
in Rome, Italy, between 2018 and 2023. Viral pathogens were identified using nasopharyngeal
molecular testing, and weather data from the week preceding hospitalization were collected. Several
machine learning models were tested, including logistic regression and random forest, comparing
the baseline (demographic and clinical) models with those including climate variables. Results:
Logistic regression showed a slight improvement in predicting severe RVIs with the inclusion of
weather variables, with accuracy increasing from 0.785 to 0.793. Average temperature, dew point,
and humidity emerged as significant contributors. Other algorithms did not demonstrate similar
improvements. Conclusions: Climate variables can enhance logistic regression models’ ability
to predict RVI severity, but their inconsistent impact across algorithms highlights challenges in
integrating environmental data into clinical predictions. Further research is needed to refine these
models for use in reliable healthcare applications.

Keywords: pediatric respiratory infections; climate variables; machine learning predictions

1. Introduction

Respiratory viral infections (RVIs), such as those caused by influenza viruses, respira-
tory syncytial virus, and coronaviruses, are among the leading causes of morbidity and
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mortality globally, particularly in vulnerable populations such as the elderly and children.
Severity of infections varies substantially across different age groups, with children often
serving as major reservoirs and amplifiers of community transmission. Multiple biological,
ecological, and socioeconomic factors contribute to the spread of respiratory infectious
diseases. RVIs demonstrate strong seasonality, with multiple underlying mechanisms
contributing to it [1–4]. On the population side of this issue, these factors include variation
in immune response and changes in behavioral patterns. For example, children spend more
time indoors during cold weather; therefore, spending more time indoors with reduced
ventilation could lead to infection outbreaks. On the climate side, temperature, humidity,
precipitation, sunlight, and wind speed have been identified as meaningful factors for
RVI spread [5]. For instance, excessive humidity can lead to the growth of mold, which
is associated with bronchitis, coughing, wheezing, chest infections, shortness of breath,
rhinitis, and allergic reactions among children [6]. Humidity, wind, and temperature affect
droplet sedimentation and evaporation—the key pathways of transmission of droplet-
borne viruses from infected to uninfected people [7–10]. Heatwaves cause increased air
pollution, which deteriorates respiratory health [11,12]. However, due to climate change,
the waves of RVIs are becoming more and more dependent on abnormal weather fluctua-
tions rather than the seasonal ones. Extreme weather events provoke vector-borne disease
outbreaks by affecting pathogens, vectors, and hosts [5]. In addition, individual indoor
climate conditions significantly modify the patterns formed by outdoor climate.

There is moderate evidence that climate conditions are related to severity of RVI
among children [13,14]. The goal of this study is to find out whether the weather conditions
before hospitalization can be used to predict the complications of respiratory infections in
hospitalized children.

2. Materials and Methods

Our retrospective cohort study included children 0–18 years old hospitalized with LRTI
(lower respiratory tract infection) symptoms at the Fondazione Policlinico Universitario
A. Gemelli IRCCS of Rome, Italy, between January 2018 and December 2023. The viral
pathogens were detected in nasopharyngeal molecules via polymerase chain reaction tests
upon hospitalization. More details about this study can be found in [15].

The primary outcome of interest was RVI severity, defined as any of the following treat-
ments during hospitalization: oxygen therapy, low-flow oxygen delivery, HFNC (high-flow
nasal cannula), CPAP (constant positive airway pressure), and VM (mechanical ventilation).
We included the following variables, collected retrospectively: age, gender, ethnicity, heart
disease, tumor or immune deficit, respiratory disease, neuromuscular disease, gastrointesti-
nal disease, and positive tests determined via nasal swab upon hospitalization for a set
of viruses, namely, influenza, adenovirus, enterovirus, parainfluenza, metapneumovirus,
bocavirus, rhinovirus, coronavirus, SARS-CoV, and isolated virus. In addition, we included
the following weather characteristics occurring during the week preceding hospitalization:
average temperature, maximal average temperature, minimal average temperature, average
humidity, average wind speed, maximal wind speed, average pressure, rain, and fog.

To evaluate the predictive potential of the weather covariates, we used multiple AI
approaches: logistic regression, decision trees, random forests, support vector machine,
and a neural network with one hidden layer. We compared two model specifications:
baseline (demographic characteristics, comorbidities, and viral infection types) and ex-
tended (baseline and weather characteristics). We preselected variables before including
them in the models, using a criterion p-value less than 0.2. We conducted analysis in R
version 4.4.1 using the packages MASS, caret, e1071, randomForest, xgboost, and neural-
net. Continuous variables were standardized. We divided the dataset into training and
testing subsets using a 70:30 ratio. To interpret the results of the best predictive model, we
used SHAP approach [16] and the corresponding shapr package for R. Robustness of the
best model was evaluated using the ProjectedGradientDescent Attack approach from the
Adversarial-Robustness-Toolbox for Python version 3.9 [17].
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3. Results

Of the 1643 records about hospitalization, 1610 contained complete data, with 134 chil-
dren having multiple hospitalizations. Patients with severe cases were slightly younger
and had more respiratory comorbidities than the patients with non-severe cases. Severe
cases were half as frequent as non-severe cases (Table 1). Non-severe-case children were
almost twice as old as the children with severe infections. The most common preconditions
were neuromuscular diseases in non-severe cases (6.3%) and respiratory diseases in severe
cases (14.0%).

Table 1. Characteristics of the patients and the weather conditions before their hospitalizations.

Characteristic Non-Severe Severe p-Value 2

N = 1108 1 N = 502 1

Gender 0.089
female 475 (43%) 238 (47%)
male 633 (57%) 264 (53%)

Age 2.4 (0.8, 5.3) 1.1 (0.2, 3.4) <0.001
Ethnicity 0.500

Italian 899 (81%) 415 (83%)
Other 209 (19%) 87 (17%)

Comorbidities

Heart disease 23 (2.1%) 13 (2.6%) 0.500
Tumor or immune deficit 25 (2.3%) 3 (0.6%) 0.018
Respiratory disease 23 (2.1%) 71 (14%) <0.001
Neuromuscular disease 70 (6.3%) 57 (11%) <0.001
Gastrointestinal Disease 15 (1.4%) 15 (3.0%) 0.025
Other diseases 165 (15%) 86 (17%) 0.300

Viruses

Influenza A/B 111 (10%) 31 (6.2%) 0.012
RSV 101 (9.1%) 191 (38%) <0.001
Adenovirus 226 (20%) 58 (12%) <0.001
Enterovirus 320 (29%) 173 (34%) 0.024
Parainfluenza 56 (5.1%) 29 (5.8%) 0.500
Metapneumovirus 32 (2.9%) 31 (6.2%) 0.002
Bocavirus 47 (4.2%) 39 (7.8%) 0.004
Rhinovirus 410 (37%) 211 (42%) 0.055
Coronavirus 52 (4.7%) 19 (3.8%) 0.400
SARS-CoV-2 7 (0.6%) 6 (1.2%) 0.200
Coinfection 384 (35%) 236 (47%) <0.001

Climate variables

Average temperature 13.7 (11.3, 20.4) 13.0 (10.3, 18.0) <0.001
Min average temperature 9.5 (7.0, 15.0) 9.3 (6.0, 13.6) 0.005
Max average temperature 18 (15, 25) 17 (15, 22) <0.001
Average dew point 9.3 (6.4, 13.1) 9.1 (5.9, 12.3) 0.090
Average humidity 70 (64, 77) 74 (67, 79) <0.001
Visibility 19.30 (18.60, 20.00) 19.10 (18.30, 19.70) 0.006
Average wind 10.10 (8.70, 12.00) 10.10 (8.60, 12.10) 0.800
Max average wind 19.8 (17.4, 22.7) 19.4 (16.7, 22.4) 0.059
Average pressure above sea level 1015.0 (1011.7, 1018.0) 1015.0 (1011.0, 1018.9) >0.9
Rain 779 (70%) 389 (77%) 0.003
Fog 212 (19%) 103 (21%) 0.500

1 N (%); median (Q1, Q3). 2 Pearson’s chi-squared test for categorical variables with any expected cell count above
or equal to 5; Wilcoxon rank sum test for continuous variables with two levels; Fisher’s exact test for categorical
variables with any expected cell count below 5.
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Based on the p-value criteria, we excluded ethnicity, heart disease, other diseases,
parainfluenza, coronavirus, average wind, average pressure above sea level, and fog. Other
variables were included in the models.

The results of the predictions are presented in Table 2. Overall, adding weather
characteristics did not significantly improve the quality of the prediction of severity among
hospitalized children. We improved the quality of prediction in the logistic regression,
whereas the other algorithms either made worse predictions (random forest and neural
network) or automatically dropped the climate variables due to considering them irrelevant
(decision trees, SVM, and XGBoost). The best model, logistic regression, had an accuracy
of 0.785 (0.745–0.821) with the basic set of covariates and 0.793 (0.754–0.828) when adding
climate variables.

Table 2. Predictive performance of models with and without climate variables for severity of viral
respiratory infections in hospitalized children.

Models Variables Accuracy
(95% CI) AUC 1 Sensitivity Specificity PPV 1 NPV 1 Precision Recall F1

Logistic
Basic 0.785

(0.745–0.821) 0.703 0.824 0.648 0.89 0.515 0.890 0.824 0.856

Basic +
Climate

0.793
(0.754–0.828) 0.720 0.835 0.658 0.888 0.551 0.888 0.835 0.86

Decision
tree

Basic 0.774
(0.734–0.811) 0.671 0.804 0.648 0.908 0.434 0.908 0.804 0.853

Basic +
Climate

0.774
(0.734–0.811) 0.671 0.804 0.648 0.908 0.434 0.908 0.804 0.853

Support
Vector

Machines

Basic 0.783
(0.743–0.819) 0.694 0.818 0.65 0.896 0.493 0.896 0.818 0.856

Basic +
Climate

0.783
(0.743–0.819) 0.694 0.818 0.65 0.896 0.493 0.896 0.818 0.856

Random
Forest

Basic 0.781
(0.741–0.817) 0.68 0.808 0.663 0.911 0.449 0.911 0.808 0.856

Basic +
Climate

0.754
(0.713–0.791) 0.656 0.798 0.584 0.879 0.434 0.879 0.798 0.837

XGBoost
Basic 0.783

(0.743–0.819) 0.692 0.817 0.653 0.899 0.485 0.899 0.817 0.856

Basic +
Climate

0.783
(0.743–0.819) 0.692 0.817 0.653 0.899 0.485 0.899 0.817 0.856

Neural
Network

Basic 0.781
(0.741–0.817) 0.700 0.823 0.636 0.885 0.515 0.885 0.823 0.853

Basic +
Climate

0.739
(0.698–0.778) 0.671 0.813 0.538 0.827 0.515 0.827 0.813 0.82

1 AUC—area under the curve, PPV—positive predictive value, and NPV—negative predictive value.

Variable importance analysis showed that for logistic regression, three climate vari-
ables (average temperature, average dew point, and average humidity) were among the
top 10 most important variables (Table 3). Average temperature made a relatively large
positive contribution to several severe cases and a relatively large negative contribution
to multiple non-severe cases (Figure 1). In some cases, both with high and low predicted
probabilities of severity, climate variables were among the top contributors to the predicted
probability of the outcome (Figure 2).

The climate variables slightly improved the performance of the logistic models for
both the original and adversarial datasets, proving the robustness of our results (Table 4).
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temperature variable.

In evaluating the predictive models, the variability in performance across algorithms
highlights the complexity of ensuring reliability in AI-driven healthcare applications. Lo-
gistic regression showed improvements with the inclusion of climate variables, while other
models such as random forest and neural networks demonstrated poorer predictive perfor-
mance. Additionally, decision trees, SVM, and XGBoost automatically excluded climate
variables, flagging concerns about their roles in prediction consistency. These findings
underscore the challenges of aligning predictive algorithms with the principles of Trustwor-
thy AI, which requires models to not only deliver accurate predictions but also maintain
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consistent reliability when integrating diverse data sources, like climate information, into
healthcare predictions.

Table 3. Variable importance in logistic regression.

Rank Variable Importance 1

1 RSV 8.421
2 Respiratory disease 7.923
3 Age 3.478
4 Metapneumovirus 3.226
5 Average temperature 2.888
6 Neuromuscular disease 2.864
7 Average dew point 2.822
8 Bocavirus 2.061
9 Average humidity 1.792
10 SARS-CoV-2 1.748

1 Measured as the absolute value of the t-statistic.

Table 4. Verification of robustness of results of logistic models using adversarial approach.

Original Dataset Adversarial Dataset

Accuracy Precision Recall F1 Accuracy Precision Recall F1

Basic covariates

Outcome = 0 - 0.82 0.89 0.86 - 0.82 0.89 0.85
Outcome = 1 - 0.65 0.51 0.57 - 0.64 0.49 0.55

Average
0.78

0.74 0.7 0.71
0.78

0.73 0.69 0.7
Weighted average 0.77 0.78 0.78 0.77 0.78 0.77

Basic + climate covariates

Outcome = 0 - 0.83 0.9 0.86 - 0.83 0.89 0.86
Outcome = 1 - 0.67 0.53 0.59 - 0.66 0.53 0.59

Average
0.79

0.75 0.71 0.73
0.79

0.74 0.71 0.72
Weighted average 0.78 0.79 0.79 0.78 0.79 0.78

4. Discussion

Our study has shown that information about climate can improve the quality of the
prediction of the severity of RVI among hospitalized children, which is in line with the
previous research findings about the relationship between climate and the risk of viral
infections. Average temperature, dew point, and humidity contributed to the prediction of
severity of LRTI among hospitalized children. However, several AI approaches did not use
this information effectively, which led to predictions with either the same or even worse
quality. According to the SHAP approach of evaluating the contribution of features to the
predicted outcome, in some individual cases, the climate variables were among the top
contributors to the prediction. Further research is needed to determine whether the selected
AI approaches and model specifications are adequate for the current research question.

These findings raise important considerations for Trustworthy AI in healthcare, empha-
sizing that beyond performance metrics, models must also be evaluated for their reliability,
fairness, and interpretability. In this context, the slight gains in logistic regression suggest
that climate variables may hold some relevance, but the inconsistency across algorithms
points to the need for careful scrutiny when introducing external data sources.

Trustworthy AI mandates not only transparency in how models function but also
the assurance that predictions are stable and explainable, especially when these models
influence clinical decisions. This study underlines the importance of conducting thorough
model validation and ensuring that any integration of additional data, such as environmen-
tal factors, does not inadvertently compromise model integrity. Going forward, it is crucial
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to refine the application of AI in healthcare to ensure that models are both scientifically
rigorous and ethically aligned with patient-centered care.

Our study has several limitations. The data included only hospitalized children, which
could lead to biases towards more severe cases and reflect the varying hospitalization
criteria across 5 years, including the period of the COVID-19 pandemic. Moreover, only
hospitalizations from the city of Rome were included, limiting the possible range of climate
variables to a single region. Still, even with the limited variation in climate variables, we can
see that some models were improved after including these variables as features. Another
limitation is that climate can impact not just the severity of viral infections but also the
absolute number of infected or hospitalized patients. We have chosen this angle for our
study because we wanted to evaluate the potential burden of climate change on public
health systems arising from the severity of some infections.
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