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A B S T R A C T

We present a systematic analysis of epigenetic age acceleration based on by far the largest collection of publicly
available DNA methylation data for healthy samples (93 datasets, 23 K samples), focusing on the geographic (25
countries) and ethnic (31 ethnicities) aspects around the world. We employed the most popular epigenetic tools
for assessing age acceleration and examined their quality metrics and ability to extrapolate to epigenetic data
from different tissue types and age ranges different from the training data of these models. In most cases, the
models proved to be inconsistent with each other and showed different signs of age acceleration, with the
PhenoAge model tending to systematically underestimate and different versions of the GrimAge model tending to
systematically overestimate the age prediction of healthy subjects. Referring to data availability and consistency,
most countries and populations are still not represented in GEO, moreover, different datasets use different
criteria for determining healthy controls. Because of this, it is difficult to fully isolate the contribution of "ge-
ography/environment", "ethnicity" and "healthiness" to epigenetic age acceleration. Among the explored metrics,
only the DunedinPACE, which measures aging rate, appears to adequately reflect the standard of living and
socioeconomic indicators in countries, although it has a limited application to blood methylation data only.
Invariably, by epigenetic age acceleration, males age faster than females in most of the studied countries and
populations.

1. Introduction

Accurate measurement of biological aging is fundamental for pre-
diction and identification of risks of age-associated diseases and mor-
tality (Campisi et al., 2019), as well as in discovery of both effective
preventive health promotion methods and interventions aimed at
modulating the aging process (López-Otín et al., 2013). The aging pro-
cess is associated with changes at many levels of human body func-
tioning, among which an important element is epigenetic changes -
genome modifications associated not with DNA sequence changes but

with chromatin modifications (Bell et al., 2019). The release of
high-throughput arrays measuring DNA methylation (Christensen et al.,
2009; Rakyan et al., 2010; Teschendorff et al., 2010) has stimulated
research on epigenetic changes in the context of biological age estima-
tion (Field et al., 2018; Horvath and Raj, 2018), the relationship be-
tween epigenetic age and age-associated pathologies (Duan et al., 2022),
and the ability to assess the efficacy of anti-aging interventions
(Declerck and Vanden Berghe, 2018; Simpson and Chandra, 2021). Such
studies strictly separate chronological age and biological age. Chrono-
logical age usually refers to the actual years of a person’s life, while
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biological age refers to the physiological condition and functioning of
the human body (Duan et al., 2022). A person may be older or younger
by biological age than by chronological age, which reflects the person’s
state of health and aging and provides a relative measure of howwell the
person’s body is functioning compared to that person’s chronological
age (Jones et al., 2015).

Various biomarkers, including epigenetic ones, can be used to esti-
mate biological age. The most common is the estimation of DNA
methylation age using epigenetic clock models (Jylhävä et al., 2017;
Kalyakulina et al., 2023a). The best known epigenetic clock is Horvath’s
clock (Horvath, 2013), which can estimate the age of many tissues
(so-called pan-tissue clock). Another Horvath’s clock can work more
accurately for cultured cells, such as fibroblasts (Horvath et al., 2018).
About the same time, the no less famous Hannum clock (Hannum et al.,
2013) was developed for blood DNA methylation (so-called
tissue-specific or single-tissue clock). The first generation of epigenetic
clocks was not sufficiently correlated with clinical blood measures, and
to include these biomarkers the DNAm PhenoAge epigenetic clock was
developed (Levine et al., 2018), regressing these bloodmeasures on DNA
methylation data and then estimating age. DNAm PhenoAge can
differentiate morbidity and mortality risks in people of the same chro-
nological age (Levine et al., 2018). The GrimAge clock is composed of
seven plasma protein markers based on DNA methylation and the
number of smoking years that are associated with morbidity or mortality
(Lu et al., 2019). Compared to other models, GrimAge focuses more on
lifestyle and age-related conditions, so it predicts longevity well (Lu
et al., 2019). Another epigenetic metric often considered together with
the epigenetic clocks is the DunedinPACE aging rate (Belsky et al.,
2022), which corresponds to the number of biologic years per chrono-
logical year. This metric is associated with morbidity, disability, and
mortality. However, different epigenetic clocks/metrics show varying
levels of association with risk factors and the consequences of aging
(Horvath and Raj, 2018), suggesting that they may also reflect distinct
aspects of aging (Oblak et al., 2021).

Often, epigenome studies do not emphasize the racial/ethnic
composition of the data, but many results are based on Caucasian co-
horts and cannot always be generalized to other groups (Levine, 2020; J.
Ryan et al., 2020). Racial/ethnic and socio-demographic information is
important precisely to assess whether epigenetic clocks can be gener-
alized to different groups of people, given that variations in DNA
methylation are altered by genetic, social, and environmental factors
(Cerutti et al., 2021; de Mendoza et al., 2018; Galanter et al., 2017;
Joehanes et al., 2016; Wu et al., 2021), and unfavorable social and
biophysical factors can influence disease risk and healthy aging pro-
cesses (Diez Roux, 2022; Noren Hooten et al., 2022). This is a known
problem when prediction models are ineffective in groups that were
under/unrepresented in the training data used to build the models (Chen
et al., 2021; Wiens et al., 2019), and the results get less accurate
(Watkins et al., 2023). One of the directions for future experiments and
recommendations in the work of Bell et al. is the detailed analysis of
different populations around the world (Bell et al., 2019).

To date, there is a lack of systematic analysis of epigenetic age ac-
celeration in different world regions and populations. In the work of
Horvath et al., it was suggested that the rate of epigenetic aging is
significantly related to race/ethnicity (Horvath et al., 2016). A wide
range of races were considered (African Ancestry, Caucasians, His-
panics, East Asians, Tsimane Amerindians), but epigenetic markers were
limited to the Horvath’s model. In a study of the U.S. adult population
(Faul et al., 2023), the first-generation epigenetic clocks (Horvath and
Hannum) show slower aging for Blacks compared to Whites, the
second-generation clocks (PhenoAge and GrimAge) and DunedinPACE
manifest faster aging for Blacks, while Hispanics in general age slower.
The influence of race on epigenetic age acceleration is also explored in
multiple works, demonstrating the importance of addressing the racia-
l/ethnic component in DNA methylation data during research (Chen
et al., 2016; Crimmins et al., 2021; Schmitz et al., 2022; Shen et al.,

2023; Toro et al., 2024). The existing works have one or more of the
following limitations: (i) consider a limited number of populations
(often within the same region); (ii) do not take into account the com-
plexities caused by batch effects: methylation values strongly depend on
the quality of the raw data and its preprocessing, very different results
can be obtained in different laboratories; (iii) use only the
first-generation, most common versions of epigenetic clocks (Horvath,
Hannum), without taking into account more modern epigenetic metrics.

In this paper, we performed a systematic analysis and studied
epigenetic age acceleration worldwide using the largest DNA methyl-
ation datasets from GEO (Barrett et al., 2013), the largest open access
repository. We investigated how healthy individuals from different
countries and populations (we took only healthy controls) differ in the
most well-known epigenetic metrics (Horvath DNAmAge (Horvath,
2013), Hannum DNAmAge (Hannum et al., 2013), SkinBlood DNAmAge
(Horvath et al., 2018), DNAm PhenoAge (Levine et al., 2018), GrimAge
(Lu et al., 2019), their PC-modifications (Higgins-Chen et al., 2022),
GrimAge version 2 (Lu et al., 2022), DunedinPACE (Belsky et al., 2022))
and analyzed their quality metrics, possibilities to extrapolate to
epigenetic data from different tissue types and age ranges different from
the training data of these models. We explored in detail epigenetic clocks
as machine learning models, highlighted their advantages and disad-
vantages, and discussed the application of modern artificial intelligence
approaches, in particular neural network architectures for tabular data,
for age estimation from DNA methylation data. In the paper, for all used
data, a harmonization procedure was performed for mandatory leveling
of batch effects for methodologically correct comparison of datasets. We
also addressed epigenetic age acceleration differences between males
and females (Iannuzzi et al., 2023; McCartney et al., 2019; Yusipov
et al., 2020).

2. Results

2.1. Epigenetic data and study design

Fig. 1 shows the overall study design, which includes GEO database
parsing, preprocessing and harmonization of DNA methylation data,
calculation of epigenetic age acceleration for the multiple epigenetic
clock models, and the analysis of epigenetic age acceleration in different
tissues, countries and populations, sex-specificity is also taken into
account.

2.1.1. GEO parsing
We parsed the entire GEO database to select DNA methylation

datasets suitable for analysis. We considered the Infinium Human-
Methylation450 (Illumina 450k, GEO has 2 codes for this standard,
GPL13534 and GPL16304) and Infinium MethylationEPIC (Illumina
EPIC, GEO has 2 codes for this standard, GPL21145 and GPL23976)
standards. We select only healthy controls (understanding that the
control group may be defined differently across studies), all samples
must have sex and age information, and a precise indication of race/
ethnicity and country of origin/residence. Participants must be at least 3
years old. Detailed datasets and samples inclusion/exclusion criteria are
provided in Methods, Section 4.1.

Fig. 1, Step 1 summarizes the statistics of the number of datasets and
samples for each GPL standard. For GPL13534 (Illumina 450k), 334
datasets were processed, containing 102358 samples; 56 datasets were
selected for the analysis, containing 15549 samples. For GPL16304
(Illumina 450k doublet, contains significantly fewer datasets), 17
datasets were processed, containing 5129 samples; 3 datasets were
selected for the analysis, containing 591 samples. For GPL21145 (Illu-
mina EPIC), 174 datasets were processed, containing 57913 samples; 30
datasets were selected for the analysis, containing 6309 samples. For
GPL23976 (Illumina EPIC doublet, contains significantly fewer data-
sets), 29 datasets were processed, containing 8903 samples; 4 datasets
were selected for the analysis, containing 767 samples. All 93 selected

I. Yusipov et al. Ageing Research Reviews 100 (2024) 102418 

2 



datasets are listed in the Data Availability Statement. Detailed infor-
mation about all processed datasets (number of samples, available
characteristics) with a description of the reasons for their inclusion or
exclusion from analysis is given in Supplementary Tables S1-S4.

2.1.2. Preprocessing and harmonization
DNA methylation data preprocessing is susceptible to different batch

effects (caused by preprocessing methods, different laboratory condi-
tions, technical errors and many other factors) that can influence the

Fig. 1. Main steps and design of the study. Step 1: GEO datasets selection. The Illumina 450k and Illumina EPIC standards were considered. For all GPLs representing
these standards, the total number of datasets by the number of samples in them is plotted, the proportion of processed and unprocessed datasets, the proportion of
datasets selected for the analysis, and their representation by country are shown. Main inclusion criteria: healthy controls; information on age, sex, country of
residence/origin, and race/ethnicity is available. The inclusion/exclusion criteria of the datasets are described in more details in Sections 2.1.1, 4.1. Step 2: To
correctly compare different datasets, DNA methylation data was harmonized for all used datasets. For each tissue, a reference dataset (usually one of the largest with
a wide age range) was selected, relative to which harmonization was performed for all other datasets using the regRCPqnREF approach. Step 3: Reviewed epigenetic
metrics (classical epigenetic clock models, their PC-modifications and DunedinPACE aging rate) and compared aspects: 10 tissues, 25 countries, 31 populations,
sex-specificity.
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results of meta-analyses and introduce non-biological sources of vari-
ability. It has been shown in the work of Sala et al. that results can vary
greatly depending on the analyzed dataset, and data harmonization is
one of the key steps in meta-analysis (Sala et al., 2020). For harmoni-
zation of DNA methylation data used in this paper, we used the
regRCPqnREF (regional Regression on Correlated Probes with quantile
normalization and reference) approach, which harmonizes multiple
DNA methylation datasets relative to some selected reference dataset
(usually a rather large by number of samples dataset with a wide age
range and close to uniform distribution of samples across age groups)
(Sala et al., 2020). For each considered tissue type, a different reference
dataset was selected (GSE87571 (Johansson et al., 2013) for blood,
other datasets are listed in Methods, Section 4.2) (Fig. 1, Step 2).

2.1.3. Epigenetic age acceleration
We used 6 most common types of epigenetic clocks, 5 PC-

modifications and DunedinPACE aging rate (main characteristics are
summarized in Methods, Table 1). Most of the considered epigenetic
clock models (as well as DunedinPACE) are single-tissue epigenetic age
estimates that were built only on blood data. Only two Horvath epige-
netic clock models (Horvath DNAmAge and SkinBlood DNAmAge) with
their PC modifications are pan-tissue models built on data from multiple
heterogeneous tissues. Such models have higher applicability to a wide
range of data, can estimate separately the aging rate of different organs
in the human body, and are potentially more sensitive to different
pathological conditions. Interestingly, almost all epigenetic models were
either built entirely on data from US representatives or have datasets
with US representatives among the training datasets. When applying
these clock models to different population cohorts, their age accelera-
tion will be considered relative to exactly the training datasets of the
clock models, which are mostly US. The relatively simple linear Elas-
ticNet model was used in constructing all the considered epigenetic
metrics models (the best known and most used models). Almost all
epigenetic clock models estimate chronological age, except DNAm
PhenoAge, which estimates phenotypic age, and GrimAge, which esti-
mates physiological age. However, we apply all clocks to healthy con-
trols only, and chronological, phenotypic and physiological age
shouldn’t differ significantly. Hereafter, for generality, we will refer to
the target variable simply as "age".

All epigenetic clocks are machine learning regression models, and
their performance should be analyzed using conventional machine
learning metrics. The detailed analysis of epigenetic clocks as machine
learning models in terms of different quality metrics are presented in
Supplementary Materials, Supplementary Figures S1-S5. Often age ac-
celeration is defined as residuals relative to a linear regression built on
some subset (El Khoury et al., 2019; Faul et al., 2023; Higgins-Chen
et al., 2021; Levine, 2020) because many clock models have system-
atic bias and their predicted values differ quite significantly from the
chronological age due to a significant bias between the data on which
the clock was trained and the test data on which age acceleration is
investigated. This approach to determine age acceleration may be useful
in the relative comparison of several different groups (Horvath and
Levine, 2015; Kalyakulina et al., 2023b; Yusupov et al., 2023). From a
machine learning perspective, it is methodologically correct to consider
the direct difference between age and predicted age, so in this study we
defined age acceleration in this way. In machine learning it is often
called “bias”. In this paper, we wanted to analyze how all the clock
models perform for all the studied populations as is. Since we analyzed
healthy controls, systematic significant deviations in the clocks will not
be due to pathological conditions, but to peculiarities of the clock
models themselves.

2.1.4. Analysis of epigenetic age acceleration
Next, we conducted a comparative analysis of epigenetic age accel-

eration across different countries and ethnic groups, both within and
between countries, the results are described in detail in Sections 2.2–2.4.
The influence of methylation differences in different tissues of the
human body was taken into account, as well as the fact that different
clocks have different predictive potential for different age groups. The
sex-specific aspect was also addressed (Fig. 1, Step 3). Information about
all samples involved in the analysis is presented in Supplementary
Table S5.

2.2. Epigenetic age acceleration in different tissues

DNA methylation of different tissues in the human body can vary
greatly (De Bustos et al., 2009; Lokk et al., 2014; Loyfer et al., 2023;Wan
et al., 2015; Ziller et al., 2013), also changing with age (Day et al., 2013;

Table 1
Epigenetic clock models analyzed in this paper. For each model, the following information is given: method of construction, number of training datasets, number of
samples in training datasets, representatives of which countries are in the training datasets, whether the training data are open or closed access, whether the model is
single-tissue or pan-tissue.

Epigenetic clock Method Number of train
datasets

Number of samples in train
datasets

Train data
origin

Open or closed train
data

Single-tissue or
pan-tissue

Hannum
DNAmAge

ElasticNet 1 dataset 482 USA Open Single-tissue
(blood)

Horvath
DNAmAge

ElasticNet 39 datasets 3931 Multiple
countries

Partially open Pan-tissue

SkinBlood
DNAmAge

ElasticNet 10 datasets 896 Multiple
countries

Partially open Pan-tissue

DNAm PhenoAge Cox regression, Gompertz
regression, ElasticNet

2 datasets 9926 (step 1). 912 (step 2) USA, Italy Closed Single-tissue
(blood)

GrimAge ElasticNet, Cox regression 1 dataset 1731 USA Closed Single-tissue
(blood)

GrimAge version 2 ElasticNet, Cox regression 1 dataset 1833 USA Closed Single-tissue
(blood)

PC-Hannum PCA, ElasticNet 1 dataset 656 USA Open Single-tissue
(blood)

PC-Horvath PCA, ElasticNet 37 datasets 4297 Multiple
countries

Partially open Pan-tissue

PC-SkinBlood PCA, ElasticNet 9 datasets 895 Multiple
countries

Open Pan-tissue

PC-PhenoAge PCA, ElasticNet 2 datasets 4505 USA, Italy Closed Single-tissue
(blood)

PC-GrimAge PCA, ElasticNet 2 datasets 2754 USA Closed Single-tissue
(blood)

DunedinPACE Linear mixed-effects model,
ElasticNet

1 dataset 1037 New Zealand Closed Single-tissue
(blood)
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Jones et al., 2015). Some of epigenetic clock models (Hannum DNA-
mAge, DNAm PhenoAge, GrimAge 1 and 2, DunedinPACE) focus only on
blood DNA methylation, while others (Horvath DNAmAge and Skin-
Blood DNAmAge) are able to analyze the epigenetic age of multiple
tissues. Blood-based models may have limited possibilities to predict
epigenetic age for other tissues. Nevertheless, it would be interesting to
examine how the considered epigenetic metrics are applied to different
human organs and tissues, whether there are any common trends be-
tween epigenetic models, whether it makes any sense to apply methyl-
ation models developed on blood to other tissues.

Fig. 2 shows the main results of the analysis of different epigenetic
clocks for all the considered tissue groups. It is important to note that the
analysis considers aggregated tissues groups - all tissue types related to
blood (whole blood, peripheral blood, monocytes, etc.) are combined
into a single group "Blood", all tissue types related to the brain (different
parts of the brain) are combined into a single group "Brain", and so on.
The resulting number of samples for all 10 tissue types with their cor-
responding age distributions are shown in Fig. 2A. Expectedly, DNA
methylation data from blood have the most samples, with one of the
widest age distributions. Buccal cells come second, with a high repre-
sentation of young samples and a lack of samples older than 60 years.
The narrowest age distributions are in epidermis (40–80 years) and
muscle (20–50 years). Both of these factors, number of samples and age
distribution, can influence the performance and quality of epigenetic

clocks, as their training data can differ significantly in these two factors.
To investigate how the considered epigenetic models work for

different tissues at different age ranges, we calculated the moving
average (within 5 years) for epigenetic age acceleration values as a
function of the real age of the samples (Fig. 2B). Expectedly, for most
epigenetic models, blood demonstrates adequate epigenetic age accel-
eration values, with no extreme low or high values. Hannum and Hor-
vath models show underestimation at old age, DNAm PhenoAge model
underestimates across the age range, DunedinPACE aging rate shows
underestimation at very young age and overestimation at very old age
(possibly because such samples were underrepresented in the training
data). Epigenetic age acceleration in the brain behaves similarly in the
Hannum, Horvath, SkinBlood, PhenoAge models with their PC modifi-
cations - it decreases almost monotonically with age to extremely low
values in old age. Buccal cells in PhenoAge and both versions of
GrimAge for young samples show a very large overestimation (with
epigenetic age acceleration values up to 100 years and more). Interest-
ingly, most tissues in the GrimAge models behave in a similar way,
monotonically decreasing with age. DunedinPACE demonstrates
adequate aging rate values (about 1) only for blood, strongly over-
estimating values for all other considered tissues. We should note that
DunedinPACE values correspond to the number of biological years per
one chronological year; values greater than 1 correspond to accelerated
aging, less than 1 to decelerated aging.
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Fig. 2. Epigenetic age acceleration for different tissues. (A) Number of samples for each considered tissue and the corresponding age distributions. Each tissue type is
matched to a different color. (B) Dependence of the moving average (within 5 years) of epigenetic age acceleration on real age for all 10 tissues for all considered
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Next, we looked at the average values of epigenetic age acceleration
for different tissues and different epigenetic models as a diagram with
hierarchical clustering (Fig. 2C). It is consistent that all epigenetic clocks
work best for blood, with age accelerations not taking extremely low or
high values. This is mainly because most epigenetic models are either
based entirely on blood DNA methylation data, or a large part of the
training data contains blood DNA methylation data (along with
methylation of other tissues). For other tissues, the values of epigenetic
age acceleration (or bias) are large in many cases. The Horvath and PC-
Horvath models perform reasonably well for almost all tissues (except
breast) because they were trained on numerous datasets (39) for many
different human organs and tissues. SkinBloodAge and PC-
SkinBloodAge also perform rather well for a large number of tissues
(they were trained on buccal, skin, and blood data) and it is under-
standable that they perform worse on brain, colon, breast, muscle, and
liver. PhenoAge and PC-PhenoAge, GrimAge, GrimAge2 and PC-
GrimAge only do well with blood and adapt poorly to other tissues.
Interestingly, Hannum does well on a wider range of tissues (given that
it was trained on blood data only) - breast, blood, buccal, saliva, lung.
PC-Hannum only does well on blood and brain. Hierarchical clustering
by epigenetic age combines Horvath and SkinBloodAge with their PC
versions and Hannum age into one group, the second group includes all
other clocks except PhenoAge, which is separate from all others and
differs greatly in results. Hierarchical clustering by tissue shows that
similar tissues in terms of epigenetic age acceleration are epidermis and
saliva, lung and liver, blood and muscle. Another group contains colon
and breast tissues, buccal, while the brain is separated from all other
tissues. Most tissue pairs differ statistically significantly in terms of mean
epigenetic age acceleration for almost all epigenetic estimates (more
details in Supplementary Materials, Supplementary Figure S6).

Since DunedinPACE does not estimate epigenetic age but the aging
rate, we discussed it separately (mean values for the considered tissues
and distributions of values are shown in Fig. 2D). The lowest value is
observed for blood, it is closest to 1 (no acceleration or deceleration).
This is an expected result since the metric is trained on blood data only.
Next in ascending average aging rate is the group of colon, saliva, and
muscle (about 1.3–1.4). For all other tissues, the aging rate is above 1.5
(within the DunedinPACE metric, this is as if the tissues aged more than
a year and a half in one chronological year). Given these results for
different tissues and the fact that DunedinPACE was built on blood data
only, we can say that DunedinPACE is relevant only for blood, whereas
for other tissues there is a systematic bias. It is also worth noting that the
epidermis and liver data are mostly presented for middle-aged and
elderly samples, which may also be one of the reasons for the rather
large DunedinPACE values.

The considered epigenetic clocks can be investigated in detail as
machine learning models and analyzed in terms of various quality
metrics for different tissues (Supplementary Materials, Supplementary
Figures S1-S5). The GrimAge models, which perform well in terms of the
different correlation coefficients (Pearson, Spearman, Kendall) between
age and predicted age, show not the best values of the R2 and MAE
metrics. In contrast, the pan-tissue epigenetic models Horvath and
SkinBloodAge are more robust and show less variability in metrics be-
tween different tissues.

We also, for each tissue, divided the entire population into females
and males, and applied the Mann-Whitney U-test for these two groups
(Mann and Whitney, 1947), obtaining FDR-adjusted p-values. We then
calculated the number of epigenetic clocks that have higher epigenetic
age acceleration in males than females (blue bars in Fig. 2E), higher
epigenetic age acceleration in females than males (red bars in Fig. 2E),
and no statistical significance (gray bars in Fig. 2E). Males have higher
epigenetic age acceleration than females for blood, buccal cells, colon,
saliva, and muscle. Females do not show higher epigenetic age accel-
eration than males for any tissue. For the remaining tissues, there are no
statistical differences between males and females or only one sex is
presented in the data.

Since blood is the most representative in sample size, further results
in Sections 2.3 and 2.4 will be presented only for blood DNA methyl-
ation. Results for other tissues are presented in Supplementary Mate-
rials, Supplementary Figures S8-S14.

2.3. Epigenetic age acceleration between the countries and populations

DNAmethylation is not constant, but dynamically changes over time
under the influence of many factors, both internal and external. People
living in different parts of the globemay have different DNAmethylation
(and consequently different rates of epigenetic aging) not only because
of different races/ethnicities, but also because of different environ-
mental conditions, living standards, social conditions, access to medical
care and many other factors. It may be difficult to separate the influence
of all these factors, however, the study of epigenetic age acceleration in
different regions of the world is of interest. We examined in detail blood
DNA methylation data (as the largest sample size) in the context of
differences in epigenetic age acceleration and aging rates between
countries (Fig. 3) and populations (Fig. 4).

The selected datasets of blood DNA methylation show a diversity of
representatives from different countries: 22 countries from all conti-
nents - Asia, Europe, Africa, America, Australia (Fig. 3A). The largest
number of samples are from the UK and USA (over 7000 and 4000
samples, respectively). The age range of samples from different coun-
tries also differs significantly. The widest age range is observed in the
UK, USA, Sweden, Spain, Germany and Russia; samples from Finland are
divided into two subgroups with ages of 40–60 years and 80 or more
years. Two subgroups are also present in the Estonian data - mostly
young 20–40 years and older 60–80 years; in Canada and Belgium all
samples are children; the sample in South Korea is mostly young 20–40
years; Singapore and Congo are similar in age range - less than 40 years;
samples from the Netherlands are elderly (60–80 years).

The mean values of epigenetic age acceleration for different coun-
tries and different epigenetic models are presented as a diagram with
hierarchical clustering (Fig. 3B). The first observation that stands out is
that there is no single country for which all epigenetic clocks give only
positive or negative age acceleration (in other words, the results of the
models do not agree with each other). PhenoAge and PC-PhenoAge give
negative epigenetic acceleration for almost all countries (they are
grouped in a separate hierarchical cluster), while GrimAge2 and PC-
GrimAge, on the contrary, give positive age acceleration for almost all
countries (exactly GrimAge2, not GrimAge) and also form a separate
cluster. If we focus our attention on epigenetic acceleration by countries
and their hierarchical clustering, we can see that Finland stands apart:
PhenoAge, GrimAge and GrimAge2 give large positive age acceleration,
PC-PhenoAge - large negative age acceleration (interestingly, there is a
huge difference between PhenoAge and PC-PhenoAge), other epigenetic
clocks give not very large acceleration of different sign. Next in the hi-
erarchical clustering are Canada and Belgium, Estonia and South Korea,
for which PhenoAge and PC-PhenoAge give very large negative age
acceleration, and all other clocks show small positive and negative
values. Singapore and Congo show large positive GrimAge, GrimAge2
and PC-GrimAge acceleration, and they are almost the only countries
with positive acceleration for PC-PhenoAge. For the Netherlands, most
of the epigenetic age acceleration rates are negative or slightly positive.
Next comes a whole block of similar countries in terms of epigenetic
characteristics - Australia, China, Germany, UK, Chile, Sweden,
Denmark, Spain, Italy - all of them have strongly positive GrimAge2 and
PC-GrimAge acceleration, negative PhenoAge and PC-PhenoAge accel-
eration. Interestingly, most of the developed European countries with a
fairly high quality of life are in this group. The next group includes
Bolivia, Russia, Brazil, USA, Croatia - most of them have negative ac-
celeration on Hannum, Horvath, PC-Horvath and PC-SkinBloodAge,
rather strongly negative acceleration of PhenoAge, weakly negative
PC-PhenoAge. Most country pairs are statistically significantly different
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in terms of mean epigenetic age acceleration for almost all epigenetic
estimates (see Supplementary Material, Supplementary Figure S7 for
details).

Since DunedinPACE does not estimate epigenetic age but the aging
rate, we discussed it separately (the mean values for the considered
countries and the distributions of values are shown in Fig. 3C). Canada
and Belgium have the lowest aging rates, probably because all the
samples are children, and DunedinPACE shows a significant underesti-
mation for children. Australia, Estonia and South Korea also age slowly.

Most countries have aging rates close to 1. For them, the DunedinPACE
distribution is quite wide, but the mean is close to 1. Samples from
Russia, Bolivia, Singapore and Congo age fastest. This seems to be
influenced by different factors - quality of life, country development,
health care, climate and data particularities. In general, we can conclude
that DunedinPACE is a characteristic that is quite strongly related to the
quality of life in different countries, showing higher values in developing
countries (accelerated aging) and lower values in developed countries
(decelerated aging).

Fig. 3. Epigenetic age acceleration in different countries in Blood. (A) Number of samples from different countries (left) with corresponding age distributions (right).
(B) Diagram of the mean values of epigenetic age acceleration for countries for all epigenetic clocks with hierarchical clustering. Color indicates the value of the mean
epigenetic age acceleration. (C) Diagram of mean DunedinPACE epigenetic aging rate values for all countries with hierarchical clustering (left) and corresponding
distributions of DunedinPACE values (right). The value of the mean DunedinPACE is indicated in color. (D) Map showing the Aggregated Sign of <EAA> (difference
between epigenetic metrics with positive age acceleration and those with negative age acceleration) for all countries analyzed. Aggregated Sign of <EAA> is also
highlighted in color. (E) Number of epigenetic metrics for each country for which: males have higher epigenetic age acceleration (blue), females have higher
epigenetic age acceleration (red), no statistical significance/only one sex (gray). Mann-Whitney U-test was applied for males and females for each tissue, with FDR-
corrected resulting p-values.
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The considered 12 epigenetic characteristics (6 original clocks, 5 PC
clocks, DunedinPACE) are not always consistent with each other, so we
proposed to calculate an aggregated characteristic describing epigenetic
age acceleration as a whole. We applied a voting method in which all
epigenetic models "vote" for positive or negative age acceleration, and
the "votes" of all epigenetic estimates are equal to each other. We called
this metric Aggregated Sign of <EAA>, and its value is calculated as the
number of epigenetic estimates with positive acceleration minus the
number of epigenetic estimates with negative acceleration. We plotted

the values of this metric on a map for all available countries (Fig. 3D).
Aggregated age acceleration varies greatly across continents, countries,
and even in neighboring countries, so let’s take a deeper look at the most
interesting countries.

Brazil has an Aggregated Sign of <EAA> value of − 4 (there are 4
more epigenetic estimates showing decelerated aging than epigenetic
estimates showing accelerated aging). For this country, there is only one
dataset (45 samples, 50–70 years old) with only women in menopause,
in good physical shape (exercising regularly), healthy, non-smokers, not

Fig. 4. Epigenetic age acceleration in different populations in Blood. (A) Sankey plot showing relations between datasets (GSEs, left), populations (center) and
countries (right). (B) Number of samples from different populations (left) with corresponding age distributions (right). (C) Diagram of the mean values of epigenetic
age acceleration for populations for all epigenetic clocks with hierarchical clustering. Color indicates the value of the mean epigenetic age acceleration. (D) Diagram
of mean DunedinPACE epigenetic aging rate values for all populations with hierarchical clustering (left) and corresponding distributions of DunedinPACE values
(right). The value of the mean DunedinPACE is indicated in color. (E) Number of epigenetic metrics for each population for which: males have higher epigenetic age
acceleration (blue), females have higher epigenetic age acceleration (red), no statistical significance/only one sex (gray). Mann-Whitney U-test was applied for males
and females for each tissue, with FDR-corrected resulting p-values.

I. Yusipov et al. Ageing Research Reviews 100 (2024) 102418 

8 



drinking coffee before blood donation, with normal glucose levels (Yumi
Noronha et al., 2022). It is worth concluding that a dataset of 45 very
healthy women is not representative enough for the entire Brazilian
population. Bolivia has an Aggregated Sign of<EAA> value of − 2 (there
are 2 more epigenetic estimates showing decelerated aging than epige-
netic estimates showing accelerated aging). There is only one dataset for
this country (37 samples, 37–90 years old) with Tsimane Amerindians.
Tsimanes are especially interesting to aging researchers because they
experience high levels of inflammation due to recurrent infections, but
show minimal risk factors for cardiovascular diseases or type 2 diabetes
with age; they have minimal hypertension and obesity, low LDL
cholesterol, and no evidence of peripheral arterial disease (Horvath
et al., 2016). It is worth concluding that the dataset of a unique, almost
isolated population is not representative enough for the entire Bolivian
population. Australia has an Aggregated Sign of <EAA> value of +6
(there are 6 more epigenetic estimates showing accelerated aging than
epigenetic estimates showing decelerated aging). There are 2 datasets
(640 samples, 4–75 years) for this country. The larger dataset (614)
contains twins and their family members for whom the risk of melanoma
was tracked (not strict criteria for selecting healthy individuals for the
control group, who are still considered healthy in the literature) (McRae
et al., 2014). The smaller dataset (26) contains 4-year-old children who
are in a control group in terms of absence of food allergy (Martino et al.,
2018). Singapore has an Aggregated Sign of <EAA> value of +4 (there
are 4 more epigenetic estimates showing accelerated aging than epige-
netic estimates showing decelerated aging). For this country, there is
only one dataset (915 samples, 19–46 years) with healthy but early
pregnant women only (Huang et al., 2021). The inclusion of this dataset
in the analysis may be questionable, but we decided to analyze it
because it is the only dataset with Singapore residents. Russia has an
Aggregated Sign of <EAA> value of − 2 (there are 2 more epigenetic
estimates showing decelerated aging than epigenetic estimates showing
accelerated aging). There is only one dataset (245 samples, 11–101
years) for this country. This dataset has strict exclusion criteria: acute
chronic diseases, cancer and respiratory infection at the time of
biomaterial donation (Kalyakulina et al., 2023b). Here, the controls are
really healthy individuals, so overall epigenetic age acceleration is small
in them. Congo has an Aggregated Sign of<EAA> value of+6 (there are
6 more epigenetic estimates showing accelerated aging than epigenetic
estimates showing decelerated aging). There are 2 datasets (190 sam-
ples, 3–42 years) for this country. The larger dataset (177) contains only
women who have recently given birth (Quinn et al., 2023a), the smaller
dataset contains 3-year-olds (Quinn et al., 2023b). South Korea has an
Aggregated Sign of <EAA> value of − 6 (there are 6 more epigenetic
estimates showing decelerated aging than epigenetic estimates showing
accelerated aging). For this country, there is only one dataset (50 sam-
ples, 20–56 years old) with strict exclusion criteria: IQ<70, history of
head trauma, serious neurological disorders (epilepsy, stroke, Parkin-
son’s disease and/or dementia) and serious diseases (Piao et al., 2022).

We also, for each country, divided all samples into females and
males, and applied the Mann-Whitney U-test for these two groups,
obtaining FDR-adjusted p-values. We then calculated the number of
epigenetic clocks that have higher epigenetic age acceleration in males
than females (blue bars in Fig. 3E), higher epigenetic age acceleration in
females than males (red bars in Fig. 3E), and no statistical significance/
one sex (gray bars in Fig. 3E). Males have a higher epigenetic age ac-
celeration than females in most countries. Females have a higher
epigenetic age acceleration than males in Australia and Congo. In
Singapore, Chile, Brazil and Bolivia, there are either no statistically
significant differences between males and females on any epigenetic
estimate or the country is represented by only one sex.

The racial/ethnic population composition of different countries can
vary greatly. For example, samples from the UK include English, Indians,
Scots, and Irish, samples from the USA include African Americans, White
Americans, Latinos, Asian Americans, and samples from Singapore

include Indians, Chinese, and Malays. Many countries are represented
by one population: Chinese in China, Swedes in Sweden, Spanish in
Spain, and so on. The relationship between individual datasets, pop-
ulations, and countries is presented in Fig. 4A. A deeper study of
epigenetic age acceleration in different populations is also of interest
because it provides more detailed insight into racial/ethnic differences
in aging rates.

The considered DNA methylation data of blood show even higher
diversity of populations compared to countries: 22 countries are repre-
sented by 29 populations (Fig. 4B). The largest number of samples
belong to English (more than 4000 samples), Indians and African
Americans (more than 2800 samples in each group). The age range of
samples from different populations, as for countries, varies greatly. The
widest age ranges are observed for English, African Americans, White
Americans, Swedes, Russians, Yakuts; Estonians, Finns, Danes are
divided into two subgroups; all samples of Canadians and Flemings are
children; Chileans and Koreans are mostly young people 20–40 years;
representatives of Dutch are elderly (60–80 years).

Next, we analyzed the mean values of epigenetic age acceleration for
different populations and epigenetic models in the form of a diagram
with hierarchical clustering (Fig. 4C). This diagram may partially be
similar to the one for countries (Fig. 3B), however, there are some
important differences: (1) There are populations that are included in
several countries (e.g., Indians are in UK and Singapore, Chinese are in
China and Singapore); (2) There are countries that include several
populations (e.g., USA is represented by African Americans, White
Americans, Latinos, Asian Americans; Russia is represented by Russians,
Yakuts). In the first case, an analysis of epigenetic age acceleration
would combine the influence from the geographic component and
emphasize the influence of genetic similarity between samples, while in
the second case, an analysis of epigenetic age acceleration would allow
for a more detailed investigation of population differences within
countries. As in the case of countries, there is no single population for
which all epigenetic clocks show only positive or negative age acceler-
ation. As in the case of countries, for populations PhenoAge and PC-
PhenoAge almost always give negative epigenetic age acceleration,
while GrimAge2 and PC-GrimAge, on the contrary, give positive age
acceleration. When comparing the diagram for countries with the one
for populations, several curious differences can be observed. In partic-
ular, Singapore, which is in the same cluster as Congo, is represented by
three populations. Chinese and Malays remain close to Congolese, while
Indians (more numerous in the UK than in Singapore) are in the same
cluster as Chileans, Danes and Swedes (where UK is located on the
country plot). African Americans, White Americans, Asian Americans
(from USA) are close together (about where USA is on the country plot),
while Latinos are in the same cluster as Spanish and Italians. Both
Russians and Yakuts representing Russia are quite similar to each other,
all epigenetic clocks show the same sign of age acceleration for both
populations. The most representative countries in terms of population
size and population diversity will be investigated in detail in Section 2.4.

We analyzed DunedinPACE separately (mean values for the consid-
ered populations and distributions of values are shown in Fig. 4D). The
slowest aging populations correspond to the slowest aging countries.
Most populations have aging rates close to 1. For these populations, the
DunedinPACE distribution is quite wide, but the mean value is close to 1.
Chinese and Malays age faster than Indians; White Americans age
slightly slower than African Americans, Latinos, Asian Americans;
Yakuts age faster than Russians. Congolese, Malays and Tsimanes age
faster than all other considered populations.

We also compared the aging rate across populations in males and
females (Fig. 4E). Overall, there are many similarities between countries
and populations. Among the interesting differences is that Chinese fe-
males age faster than males (in China males age faster, while in
Singapore, which also has Chinese, there is no statistically significant
difference). In Russians, males age faster than females, while in Yakuts
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there is no statistically significant difference.
In other tissues, epigenetic age acceleration may also differ between

countries and populations. We summarize the main points here. In the
analysis of buccal data for representatives of Canada, Netherlands, UK,
USA pan-tissue epigenetic models show low values of age acceleration,
for representatives of Jamaica all models consistently show high positive
age acceleration. Interestingly, in Canada and Netherlands, the majority
of samples are children, and girls have higher age acceleration than
boys. A notable feature of the brain methylation data is that for all
populations, all pan-tissue epigenetic models show negative mean
epigenetic age acceleration and a monotonic decrease with age. Mono-
tonically decreasing with age of mean epigenetic age acceleration is also
observed in the lung and breast data. The peculiarity of breast methyl-
ation data is also that for all populations, all pan-tissue epigenetic
models show positive mean epigenetic age acceleration (this may be due
to dataset characteristics, there is only one dataset for this tissue with
data from cancer-free women who undergo reduction mammoplasty). In
the analysis of colon SkinBloodAge and PC-SkinBloodAge data for all
countries and populations demonstrates strongly positive mean epige-
netic age acceleration. Detailed results are presented in Supplementary
Materials, Supplementary Figures S8-S14.

2.4. Epigenetic age acceleration inside the countries

Most countries and populations in the analyzed blood DNA methyl-
ation data are represented by a few datasets, but there are large coun-
tries for which many samples from multiple datasets are available, and

the epigenetic differences between them would be interesting to inves-
tigate. We have considered separately three countries for which the
largest number of samples are available - UK, USA and Sweden. For
them, we have analyzed in detail epigenetic age acceleration in different
populations and even datasets. Let us focus on each of them in detail.

We started with a detailed analysis of the UK data: during the GEO
analysis, 11 datasets were selected with representatives of 4 populations
- English, Indians, Scots, and Irish. The numbers of samples in each
dataset and in each population with their age distributions are presented
in Fig. 5A. All datasets have fairly wide age distributions except two,
GSE105018 and GSE154566, which contain only 18-year-old partici-
pants. The English and Indians populations are the most representative,
and all populations have fairly broad age distributions. We calculated
the moving average (within 5 years) of epigenetic age acceleration and
plotted it as a function of real age (Fig. 5B) to investigate how different
epigenetic models work at different age ranges and to analyze similar-
ities and differences between populations. Most epigenetic models show
similar trends - almost monotonically decreasing epigenetic age accel-
eration with age (Horvath, GrimAge, GrimAge2, PC-Hannum, PC-Hor-
vath, PC-SkinBloodAge, PC-GrimAge). Different behavior is observed for
SkinBloodAge and PhenoAge - for all populations there are "fluctuations"
around some age acceleration level (SkinBloodAge in Scots - about
10–12 years, SkinBloodAge in other populations - about 2–5 years,
PhenoAge in Scots - about 5 years, PhenoAge in other populations -
about − 10 years), no significant increases/decreases are observed. Most
of the original models show the highest epigenetic age acceleration for
Scots compared to other populations (SkinBloodAge, PhenoAge,

Fig. 5. Epigenetic age acceleration in different datasets (GSEs) and populations in the UK. (A) Number of samples from different datasets (top left) and populations
(bottom left) with corresponding age distributions (top right and bottom right, respectively). (B) Dependence of the moving average (within 5 years) of epigenetic age
acceleration on real age for all populations. (C) Diagram of the mean values of epigenetic age acceleration for datasets (top) and populations (bottom) with hier-
archical clustering. (D) Diagram of the mean values of DunedinPACE for datasets (top) and populations (bottom) with hierarchical clustering. (E) Number of
epigenetic metrics for each dataset (top) and populations (bottom) for which: males have higher epigenetic age acceleration (blue), females have higher epigenetic
age acceleration (red), no statistical significance/one sex (gray). Mann-Whitney U-test was applied for males and females for each tissue, with FDR-corrected
resulting p-values. (F) Map of the UK with marked locations of samples from different datasets. The upper left corner indicates datasets for which the exact loca-
tion of samples within the UK is unknown.
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GrimAge, GrimAge2). An interesting behavior is shown by English for
Hannum - the average epigenetic age acceleration first decreases up to
40 years, then increases up to 60–70 years and decreases again at older
ages (although it is worth noting that the values themselves do not show
very high or low values). DunedinPACE aging rate increases with age in
all populations. The mean epigenetic age acceleration for all datasets
and populations with hierarchical clustering is shown in Fig. 5C. The
small dataset which is part of the twin study (GSE154566) has very large
predicted values of GrimAge, GrimAge2 and PhenoAge, while PC-
modifications and the rest of the clocks show adequate results. This
means that GrimAge, GrimAge2 and PhenoAge may be vulnerable to
machine learning attacks (Goodfellow et al., 2014), i.e. a relatively small
deviation in the input data drastically degrades the quality of the model,
while PC-modifications of the clock are relatively less susceptible to this.
Irish have lower mean epigenetic age acceleration for all 12 estimates
than the other populations. In English, Indians, and Scots, the mean
values of epigenetic acceleration generally show a similar trend: high
age acceleration in GrimAge2, PC-GrimAge, PC-Hannum, and Skin-
BloodAge, negative age acceleration in PC-PhenoAge, and lower abso-
lute values in the other clocks. Separately, we considered the mean
DunedinPACE aging rate (Fig. 5D) - all datasets and populations show
values close to 1. In the largest GSE55763 dataset, DunedinPACE has a
maximum (1.059). Irish and English have the minimum DunedinPACE
among populations (0.934 and 0.951, respectively), Indians age the
fastest (1.095). For most datasets, males have higher epigenetic age
acceleration than females (Fig. 5E); only GSE105018 (equal number of
epigenetic estimates demonstrating accelerated aging of males relative
to females) and GSE152027 (females age faster than males) differ. For

populations, the pattern is quite homogeneous - all males have higher
epigenetic age acceleration than females. The datasets represent resi-
dents from different parts of the UK, with a predominance of London
residents (Fig. 5F).

We next performed a detailed analysis of the USA: during the GEO
analysis, we selected 20 datasets (the largest number among all coun-
tries) that contain representatives of 4 populations - African Americans,
White Americans, Latinos, and Asian Americans. The numbers of sam-
ples in each dataset and in each population with their age distributions
are presented in Fig. 6A. Most of the datasets have fairly broad age
distributions, GSE132181 (only 7-year-olds), GSE219037 and
GSE227809 (about 20 years old), and GSE107459 differ. African
Americans and White Americans are the most representative pop-
ulations; all populations except Asian Americans have rather broad age
distributions. We calculated a moving average (within 5 years) of
epigenetic age acceleration and plotted it as a function of real age
(Fig. 6B) to investigate how epigenetic models work at different age
ranges and to analyze similarities and differences between populations.
As for the UK, many epigenetic models show an almost monotonic
decrease in epigenetic age acceleration with age (Horvath, GrimAge,
GrimAge2, PC-Hannum, PC-Horvath, PC-SkinBloodAge, PC-GrimAge).
According to Hannum, different populations show different behavior -
African Americans and Latinos show a decrease in epigenetic age ac-
celeration with age, while White Americans, on the contrary, show an
increase until the age of 50, after which epigenetic acceleration values
fluctuate around 0. Different behavior is also observed for SkinBloodAge
and PhenoAge - for all populations there are "fluctuations" around some
level (SkinBloodAge around 0–5 years, PhenoAge around − 10 years), no

Fig. 6. Epigenetic age acceleration in different datasets (GSEs) and populations in the USA. (A) Number of samples from different datasets (top left) and populations
(bottom left) with corresponding age distributions (top right and bottom right, respectively). (B) Dependence of the moving average (within 5 years) of epigenetic age
acceleration on real age for all populations. (C) Diagram of the mean values of epigenetic age acceleration for datasets (top) and populations (bottom) with hier-
archical clustering. (D) Diagram of the mean values of DunedinPACE for datasets (top) and populations (bottom) with hierarchical clustering. (E) Number of
epigenetic metrics for each dataset (top) and populations (bottom) for which: males have higher epigenetic age acceleration (blue), females have higher epigenetic
age acceleration (red), no statistical significance/one sex (gray). Mann-Whitney U-test was applied for males and females for each tissue, with FDR-corrected
resulting p-values. (F) Map of USA with marked locations of samples from different datasets. The upper left corner shows datasets for which the exact location of
samples within the USA is unknown.
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significant increases/decreases are observed. Overall, the entire USA
cohort appears to be fairly homogeneous, with no population that stands
out significantly on any of the epigenetic estimates. DunedinPACE aging
rate increases with age in all populations, only the starting point differs,
which is highest for African Americans and lowest for White Americans.
Mean epigenetic age acceleration for all datasets and populations with
hierarchical clustering is presented in Fig. 6C. Systematically low ac-
celeration values are shown by PhenoAge and PC-PhenoAge, isolated in
a separate hierarchical cluster. GrimAge2 and PC-GrimAge have
maximum values. Other epigenetic ages have no clear tendencies to
overestimate/underestimate acceleration. For populations, the mean
values of epigenetic acceleration generally have a similar trend: high age
acceleration for GrimAge2, PC-GrimAge, PC-Hannum, SkinBloodAge,
negative acceleration for PhenoAge, PC-PhenoAge, PC-Horvath, PC-
SkinBloodAge (separate group in hierarchical clustering). The remain-
ing clocks have smaller absolute values. Overall, there is relative con-
sistency between datasets and populations for all epigenetic estimates of
accelerated aging in the US, in contrast to the UK. We considered the
DunedinPACE mean aging rate separately (Fig. 6D). The datasets vary
quite widely in aging rate values. The systematically low values of age
acceleration and DunedinPACE in the GSE147430 dataset may be due to
the choice of control group (they are non-smokers, have clean medical
records and no acute diseases) (Martos et al., 2020). In contrast, datasets
GSE174818 (control group has a negative test for COVID-19) (Balnis
et al., 2021), GSE72680 (control group is not taking any treatment but
may have childhood trauma) (Zannas et al., 2019) and GSE77696
(control group are veterans without HIV) (Zhang et al., 2016) have
higher age acceleration and DunedinPACE values. The spread of mean
DunedinPACE values is quite large, ranging from 0.62 for GSE147430 to
1.23 for GSE174818. Relative to populations, DunedinPACE is minimal
in White Americans and maximal in African Americans, but generally
close to 1 in all populations. For all datasets, either males have more
epigenetic age acceleration than females or there is no statistical sig-
nificance/one sex (Fig. 6E). For populations, the pattern is homoge-
neous, with all males having higher epigenetic age acceleration than
females. Datasets represent residents from the western, southern, and
eastern parts of the USA; residents from the northern and central parts
are not represented (Fig. 6F).

Another country that we analyzed in detail is Sweden: 4 datasets
were selected during the GEO analysis, all representing the same pop-
ulation, Swedes. The numbers of samples in each dataset with their age
distributions are shown in Fig. 7B. The 3 datasets have wide age dis-
tributions, while the dataset GSE73103 has only young samples (15–35
years old). We remind that the GSE87571 dataset is the reference dataset
for harmonization of blood DNA methylation data (Johansson et al.,
2013). We calculated a moving average (within 5 years) of epigenetic
age acceleration values and plotted it as a function of real age (Fig. 7A)
to investigate how epigenetic models perform at different age ranges. All
datasets in Sweden are homogeneous and behave similarly across all
epigenetic estimates. Most epigenetic models show almost monotonic
decreasing epigenetic age acceleration with age (Hannum, Horvath,
GrimAge, GrimAge2, PC-Hannum, PC-Horvath, PC-SkinBloodAge,
PC-GrimAge). At the same time in Hannum, PC-Hannum, PC-GrimAge,
GrimAge2 epigenetic age acceleration is positive almost on the whole
age range and becomes negative only in old age (more than 80 years), in
other epigenetic models with monotonous behavior about 60 years there
is a transition from positive to negative zone. The behavior on Skin-
BloodAge, PhenoAge and PC-PhenoAge differs - for all datasets, there is
first an increase, then a decrease. DunedinPACE aging rate increases
with age, crossing 1 around 60 years. The mean epigenetic age accel-
eration for all datasets and populations with hierarchical clustering is
presented in Fig. 7C. As in the previous cases, PhenoAge with its
PC-version show a rather strong negative age acceleration, while
GrimAge2 and PC-GrimAge have a large positive age acceleration.
PC-Hannum is also slightly higher compared to the original Hannum
clock model. All datasets are quite homogeneous in terms of age accel-
eration values, the metrics in all datasets have the same sign. We
separately considered the mean DunedinPACE aging rate (Fig. 7D),
which varies significantly between datasets with GSE73103 having a
mean value close to 0.8 (may be due to the fact that DunedinPACE often
underestimates for young samples), while GSE87571 and GSE42861 are
around 0.97. In general, DunedinPACE values in Sweden are less than 1
(corresponding to decelerated aging). The datasets represent residents
from northern and eastern Sweden (Fig. 7E).

Fig. 7. Epigenetic age acceleration in different datasets (GSEs) in Sweden. (A) Dependence of the moving average (within 5 years) of epigenetic age acceleration on
real age for all datasets. (B) Number of samples from different datasets (left) with corresponding age distributions (right). (C) Diagram of the mean values of
epigenetic age acceleration for datasets with hierarchical clustering. (D) Diagram of the mean values of DunedinPACE for datasets with hierarchical clustering. (E)
Map of Sweden with marked locations of samples from different datasets. The bottom right corner shows datasets for which the exact location of samples within
Sweden is unknown.
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3. Discussion

3.1. Conclusion

In this work, we performed a large study of epigenetic age acceler-
ation in different parts of the globe, the analysis included open access
DNA methylation data from the GEO repository, taken from 10 tissue
groups, representing 25 countries and 31 populations, with a separate
focus on the sex-specific patterns of age acceleration. We investigated in
detail the most popular models of epigenetic clock and aging rates, and
compared their behavior across tissues, countries, races/populations,
sexes, and age ranges. It is important that only healthy controls are
analyzed to avoid the influence of different diseases on epigenetic age
acceleration.

Blood is the most common source of DNA methylation data with
most epigenetic clocks built mainly on blood samples. According to our
results, most epigenetic blood-based clocks manifest a decrease in the
mean epigenetic age acceleration with age when applied to almost all
tissues, some of them show either fluctuations around a certain level or
non-monotonic changes with age. As expected, all epigenetic models
work best for blood, except that the pan-tissue Horvath epigenetic clock
model handles almost all tissues. Notably, epigenetic models based on
blood DNA methylation demonstrate higher age acceleration for other
tissues (bias in terms of machine learning). All versions of GrimAge
(GrimAge, GrimAge2, PC-GrimAge) for all investigated tissues demon-
strate positive mean age acceleration, while PhenoAge for most tissues
(except saliva, buccal and colon) demonstrates negative mean age ac-
celeration. For the brain, most epigenetic clocks have negative age ac-
celeration (except the GrimAge group). Our results agree with the
previous studies for some specific tissues. It was found that epigenetic
clocks based on blood methylation data demonstrate negative age ac-
celeration for brain tissue, not only in healthy controls, but also in pa-
tients with Alzhemier’s disease and other neurodegenerative disorders.
At the same time, no such effect was observed for the brain tissue base
epigenetic clocks (Grodstein et al., 2021b, 2021a). In contrast, buccal
methylation data yield systematic positive age epigenetic acceleration
according to blood based clocks such as PhenoAge, GrimAge and Dun-
edinPACE (Raffington et al., 2023; Shokhirev et al., 2024). For the colon
tissue derived data, all clocks significantly overestimate epigenetic age,
with only Horvath and PhenoAge showing mean values close to 0. In
other studies Horvath showed the best correlation with chronological
age (Wang et al., 2020; Widayati et al., 2023), and interestingly Phe-
noAge showed epigenetic age deceleration in patients with high cancer
risk (Wang et al., 2020). DunedinPACE blood-based clocks produce an
aging rate of about 1 (one biological year per one chronological year) for
blood methylation only, yielding age acceleration when mechanistically
applied to all other tissues. There is no tissue for which the number of
epigenetic clocks for which females age faster than males is higher than
the number of epigenetic clocks for which males age faster than females.
Male-biased vulnerability were also previously found in multiple tissues
(blood, brain, saliva) (Horvath et al., 2016).

Our results demonstrate that all epigenetic clock models work
differently for different countries, and there is no country for which all
of them consistently show only positive or only negative mean age ac-
celeration. GrimAge2 and PC-GrimAge systematically show positive age
acceleration for almost all countries, while PhenoAge and PC-PhenoAge,
on the contrary, show negative age acceleration. Such a trend has been
observed previously in multiple studies (Engelbrecht et al., 2022; Faul
et al., 2023; Reed et al., 2022). The DunedinPACE aging rate manifests
consistent results: very low values of the average aging rate for children
(Canada, Belgium), normal aging rate (about 1) for most developed
countries with a sufficiently high standard of living (most European
countries, USA), higher aging rate values for the rest of the countries
(Russia, Bolivia, Congo). It agrees with the finding of the original paper
where the DunedinPACE model was proposed that the lower socioeco-
nomic class is characterized by faster aging (Belsky et al., 2022), and

another evidence that higher socioeconomic status was also associated
with slower aging (Raffington et al., 2023).

For an aggregated representation of epigenetic models in different
countries, we introduced Aggregated Sign of EAA, which is based on the
"voting" of all metrics for "positive" or "negative" age acceleration. It
helps to evaluate consistency of different clocks and thus strengthen
interpretation. In particular, it allowed for highlighting the importance
of covariates, characterizing country-specific datasets. Namely, low
epigenetic age acceleration in Brazil or high epigenetic age acceleration
in Australia is likely due to the characteristics of the datasets (for Brazil
it represented only healthy, regularly exercising women (Yumi Noronha
et al., 2022), for Australia it was possibly influenced by the general
melanoma risk (McRae et al., 2014)). It also stresses the importance of
carefully defining the control group inclusion criteria, especially for
multi-centered studies. It is important to note that for most of the
countries, more epigenetic models manifest higher epigenetic age ac-
celeration in males, as it was shown before in different cohorts
(Engelbrecht et al., 2022; Iannuzzi et al., 2023; Kankaanpää et al., 2022;
Yusipov et al., 2020).

In the work by Ryan et al., a large meta-analysis of associations be-
tween epigenetic ages and health, lifestyle, and environmental factors
was performed (J. Ryan et al., 2020). The heterogeneity of epigenetic
age acceleration in different studies observed in our work is apparently
affected by biases in the data representation on GEO (in terms of pop-
ulations, some being overrepresented, some are represented by literally
few datasets, many are simply missing), and by different inclusion ap-
proaches for healthy controls between studies. Similar conclusions were
reached by Ryan et al., where a large meta-analysis of associations be-
tween epigenetic ages and health, lifestyle, and environmental factors
was performed (J. Ryan et al., 2020). They reflected that taking into
account differences in the associations of different epigenetic clocks
with different factors, a clear association of a particular health, lifestyle,
or environmental factor with some clocks is not available.

The problem of epigenetic aging in the context of different races/
ethnicities was emphasized by Levine, pointing out that most epigenetic
clocks are based on Caucasians, and their results may not generalize to
other groups (Levine, 2020). Our findings on the variable performance
of epigenetic clock models in different populations supports the propo-
sition by Levine that it is necessary to include multiracial/multi-ethnic
data in the training samples for epigenetic clocks as much as possible,
to improve the resulting sensitivity. The work by Bell et al. also calls a
heavy skew of epigenetic data and analyses toward populations of Eu-
ropean ancestry in representation a particular challenge for epigenetic
research (Bell et al., 2019). To date, the structure of GEO, one of the
largest repositories of DNAmethylation data, still manifests the absolute
majority of data from developed countries in Europe, America, and Asia,
the data samples from developing countries being quite small and often
covering a narrow group of participants that do not fully characterize
the population of the entire country.

Comparison of different epigenetic models for specific populations
has been addressed in several previous studies. In particular, in the work
by Horvath et al., it was shown that Latinos (Hispanics in the original
work) and Tsimanes demonstrate different relations with respect to
White Americans (Caucasians in the original work) depending on the
choice of epigenetic clocks (Horvath et al., 2016). It agrees with our
results in part, as Tsimanes indeed demonstrate accelerated or deceler-
ated aging relative toWhite Americans depending on epigenetic metrics.
In contrast, our results for Latinos are more definite, as for all metrics
White Americans have lower mean age acceleration. The disagreement
between the two papers could be influenced by the differences in
datasets. In Horvath et al., it was also shown that education level makes
an effect on epigenetic age acceleration as well. The results of the
American population studies in the work of Faul et al., agree well with
our results for White and African Americans: according to the
first-generation epigenetic clock White Americans age faster, and ac-
cording to the second-generation clock and DunedinPACE African
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Americans age faster (Faul et al., 2023). It has also been shown that
epigenetic age acceleration can be associated with multiple health fac-
tors and socioeconomic status. Inconsistent results for different clocks
among American populations (accelerated aging at some clocks and
decelerated aging at others) have been observed in other studies
(Crimmins et al., 2021; Tajuddin et al., 2019). The worldwide issue of
the skewed data representation is also noticed within the USA (and
European countries) as some home racial/ethnic populations are studied
most frequently and comprehensively, while representatives of other
states/countries are rarely found in the context of cross-national
epigenetic studies.

Summarizing, we conclude that different epigenetic clocks do not
agree with each other in the sign of age acceleration for different
countries and populations and have a pronounced bias (which is char-
acterized by mean age acceleration). The difference between the mean
values of age acceleration between epigenetic clocks can exceed 25–30
years for the same dataset. Different versions of GrimAge tend to over-
estimate age, and PhenoAge underestimates it. At the same time, Dun-
edinPACE appears to be rather reliable and corresponds well to the
standard of living in different countries, manifesting higher values in
developing countries and lower values in developed countries.

The considered epigenetic clock models, which are linear machine
learning models, differ in the analyzed quality metrics - Pearson,
Spearman, Kendall correlation coefficients, R2, MAE. At the same time,
same clock models can demonstrate good or poor results for different
metrics. The use of modern artificial intelligence approaches, such as
neural network architectures for tabular data, can help to enhance the
predictive ability and overall quality of epigenetic clock models.

Except geographic and ethnic characteristics, it is important how
healthy controls are formed, and epigenetic age acceleration depends
strongly on specific datasets in different countries. When the health
criteria are stricter, relatively less age acceleration is observed. The
contributions of ’geography/environment’, ’ethnicity’ and ’health’ are
not quite separable, although it is possible to select relatively more and
less healthy individuals in any country, compared to the training data of
the clocks. Small datasets are unlikely to characterize the population as a
whole. Therefore, it would be extremely important to collect and
compare healthy control cohorts recruited using the same criteria
worldwide, with a broad uniform distribution across countries, despite
all organizational and financial challenges. Currently, the largest open-
access repository of DNA methylation data, GEO, allows for analyzing
epigenetic aging with a focus on geography and ethnicity, although with
considerable limitations.

3.2. Limitations

The resulting map of epigenetic age acceleration does not always
reliably reflect trends of population aging in different countries. Data-
sets from some countries are not representative. We considered the
largest datasets in the GEO repository, but not all, and some unique
populations with few samples may still be left out.

The results of the analysis depend heavily on how healthy controls
are defined in each individual dataset. In some countries and datasets,
the criteria are much stricter than in others (absence of chronic diseases,
oncology, diseases and ailments in the acute stage is required), while in
other datasets only information on the absence of any disease may be
available, with no indication of comorbidities.

Existing epigenetic clocks have some weaknesses - they are very
sensitive to data, batch effects, have significant acceleration and
deceleration even on conditionally control subjects due to the fact that
the data on which they are tested are often significantly different from
the training data. As in many areas of machine learning, a rule-of-thumb
works: the bigger, more complete, and more diverse the training data,
the better quality metrics the models demonstrate (as, for example, pan-
tissue Horvath clock trained on multiple datasets performs relatively
well on more than just blood).

The amount of methylation data increases over the years and it is
reasonable to update the clock models by expanding their training data
so that they perform reliably in a larger number of cases. It also makes
sense to use state-of-the-art machine learning models when developing
new clocks. ElasticNet, on which most clocks are based, is a good and
proven tool for reducing the input feature space. But it is still a linear
model, assuming linear relationships between the features. At the same
time, modern neural network architectures, such as generalizations of
attention and transformer mechanisms for tabular methylation data, are
nonlinear and in many studies perform better in terms of model quality
metrics (Gorishniy et al., 2021), and current trends of explainable arti-
ficial intelligence will allow a reasonable biological interpretation
(Kalyakulina et al., 2024).

4. Methods

4.1. Epigenetic data processing

We used the R packages GEOmetadb (Zhu et al., 2008), GEOquery
(Davis and Meltzer, 2007) to do preliminary parsing of all available
datasets in GEO. These tools allow access to metadata associated with
samples, platforms, and datasets. The GEOparse python package
(Gumienny et al., 2021) was used to retrieve characteristics and fields in
datasets, and in some cases for automated downloading of preprocessed
methylation data.

Next, we describe the details of the datasets selection procedure.
First, we selected only healthy controls. Since our aim was to

compare age acceleration across countries and populations, we needed
to exclude the influence of diseases - they are very heterogeneous and
can have a significant impact on the final results. Here we should make
an important note: healthy controls can be defined differently in each
dataset and do not necessarily include absolutely healthy people: in
some datasets controls are healthy people without chronic diseases and
acute conditions, in some datasets controls are people without certain
studied diseases, in some datasets controls are people without bad
habits, and so on.

Second, all samples must have information on sex and age. This is
necessary to calculate epigenetic age estimates (including using the
Horvath’s calculator), as well as epigenetic age acceleration values. Sex
is also necessary to perform sex-specific analysis.

Third, samples should have an exact race/ethnicity description so
that the analysis would have a complete picture of the compared pop-
ulations. Samples with unknown race/ethnicity were excluded, and
samples with an unknown country of origin/residence were also
excluded. We used Geo-referencing Ethnic Power Relations (GeoEPR
2021) to systemize countries and population groups (Vogt et al., 2015).

Fourth, the age of the participants should be greater than or equal to
3 years. Despite the fact that for most of the epigenetic clock models
children were not part of the training data, we believe that it would be
interesting to study and analyze the ability of these models to make
extrapolated predictions on participants of small age. We still decided
not to consider newborns and children younger than 3 years of age
because the most active development is happening in the first 3 years,
after which a new stage is coming (Jeong et al., 2021; NICHD Early Child
Care Research Network, 2003; Regalado and Halfon, 2001; Shonkoff
et al., 2012).

Fifth, the dataset should initially contain at least 100 individuals
(there may be fewer healthy controls who fit all criteria). We did not
consider small datasets because few samples per group may not yield
robust statistical results. Because manual preprocessing was performed
for all datasets (methylation data may be presented in different formats;
datasets may lack some important features on GEO, but these features
may be presented in the supplementary materials of related articles), the
largest datasets were considered first. One of the options could have
been to consider only datasets that have complete information on GEO,
but we did not want to lose potentially valuable information, unique
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population data, so we took a complex but detail-accurate path.
Sixth, the dataset should be released on GEO no later than December

14, 2023.
Additional criteria for excluding samples: (1) Each tissue must have

at least 10 samples in total, tissues with fewer samples are not consid-
ered; (2) Each ethnic group must have at least 10 samples in total (for all
tissue types) - groups with fewer samples are not considered; (3) Each
country (state) must have at least 10 samples in total (for all tissue types)
- countries with fewer samples are not considered. This exclusion is
necessary to ensure that only representative size groups with statistically
significant results remain.

4.2. Epigenetic data preprocessing and harmonization

DNA methylation datasets in GEO can be divided into 2 large groups
by storing type: datasets with raw data (*.idat files that can be processed
in any chosen way) and datasets with already preprocessed data (can be
preprocessed in many ways and presented in different resulting for-
mats). Different types of preprocessing are one of the sources of batch
effects. It has been shown that results can vary greatly depending on the
analyzed dataset, and data harmonization is one of the key steps in meta-
analysis (Kalyakulina et al., 2022). For harmonization of DNA methyl-
ation data, we used the regRCPqnREF approach and harmonized DNA
methylation datasets relative to a selected reference dataset. A different
reference dataset was selected for each tissue (if more than 1 dataset is
available for a given tissue type). For DNA methylation in blood, the
reference dataset was GSE87571, for buccal cells - GSE137688, for brain
- GSE74193, for colon - GSE151732, for saliva - GSE111223.

4.3. Epigenetic ages estimators and statistical analysis

The main details of the used epigenetic models are summarized in
Table 1. The first-generation epigenetic clock models (Hannum DNA-
mAge, Horvath DNAmAge, SkinBlood DNAmAge) use linear ElasticNet
model for chronological age prediction. The second-generation epige-
netic clock models (DNAm PhenoAge, GrimAge) use linear ElasticNet
model as a step in the age estimator construction process. For obtaining
DNAm PhenoAge model, authors first applied a Cox penalized regres-
sion model to select variables for inclusion in phenotypic age score.
Next, selected biomarkers and chronological age were included in a
parametric proportional hazards model based on the Gompertz distri-
bution. The estimated mortality score was converted into units of years
(phenotypic age) and it was regressed on DNA methylation data using
ElasticNet. Phenotypic age, estimated by DNAm PhenoAge model,
should be similar to chronological age for a healthy population. For
obtaining the GrimAge model, plasma proteins were regressed on the
CpGs using ElasticNet, only proteins with correlation greater than 0.35
between observed plasma levels and their respective DNAm based es-
timators remained. They next were used in an ElasticNet Cox regression
model to regress time-to-death and were converted into years. Physio-
logical age, estimated by the GrimAge model, should also be similar to
chronological age for a healthy population. PC-clocks first applied PCA
for all CpGs and then used ElasticNet for PC embeddings. For calculation
of DunedinPACE, 20-year Pace of Aging was first calculated using
mixed-effects growth modeling of longitudinal change in biomarkers
measuring integrity of different systems and next, ElasticNet regression
was applied.

The data on which the considered models were trained are signifi-
cantly different - most epigenetic clocks were built on a few closed-
access datasets, however, rather large in the number of samples.

The results of the epigenetic clocks Hannum DNAmAge (Hannum
et al., 2013), Horvath DNAmAge (Horvath, 2013), SkinBlood DNAmAge
(Horvath et al., 2018), DNAm PhenoAge (Levine et al., 2018), GrimAge
(Lu et al., 2019), GrimAge version 2 (Lu et al., 2022) were obtained
using Horvath’s DNA Methylation Age Calculator (Horvath Calculator).
PC-clocks (Higgins-Chen et al., 2022) and DunedinPACE (Belsky et al.,

2022) results were obtained using the programming code accompanying
the original articles.

Horvath’s DNA Methylation Age Calculator requires specifying a
tissue that is selected from a special list and does not always support all
detailed tissue types. Therefore, in the analysis we considered aggre-
gated tissue groups - all blood-related tissue types (whole blood, pe-
ripheral blood, specific cell types, etc.) were combined into one group
"Blood", all brain-related tissue types (different parts of the brain) were
combined into one group "Brain", and so on.

To analyze the mean epigenetic age acceleration in different age
groups, we calculated the moving average in a window of 5 years.

Among the considered 12 epigenetic characteristics (6 original
clocks + 5 PC clocks + 1 DunedinPACE) there is no the most important
or, on the contrary, the most unimportant clocks. But they do not always
agree with each other and it would be clearer to get an aggregated
picture describing the epigenetic age acceleration as a whole. Adding up
all accelerations of the clocks is not the best option, because there are
clocks with large systematic positive (GrimAge2) or negative (Pheno-
Age, PC-PhenoAge) age acceleration, and their impact will be dominant
when averaging over all clocks (it is still unclear how to take into ac-
count DunedinPACE, which is not measured in years). For the above
reasons, we applied a voting method in which the "votes’’ of all epige-
netic estimates are equal to each other. Each epigenetic estimate can
show either a positive age acceleration or a negative age deceleration
(for epigenetic clock models, the sign of the epigenetic acceleration is
taken, and for DunedinPACE, a value less than 1 is considered as a
negative deceleration, a value greater than 1 is considered as a positive
acceleration). Next, we can calculate the number of "positively" and
"negatively" accelerated clocks and introduce the Aggregated Sign of
<EAA> = Num positive - Num negative (Fig. 3D). This characteristic
takes values from − 12 (all epigenetic ages and DunedinPACE show
negative age acceleration) to +12 (positive age acceleration in all clocks
and DunedinPACE).

Female and male groups and pairwise comparisons of tissues and
countries (Supplementary Figures S6, S7) were performed using the
Mann-Whitney U-test (Mann and Whitney, 1947). All p-values were
FDR-corrected using the Benjamini-Hochberg procedure (Benjamini and
Hochberg, 1995).
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et al., 2014), GSE112893 (Schulze et al., 2019), GSE73103 (Voisin et al.,
2015), GSE90124 (Roos et al., 2017), GSE61496 (Tan et al., 2014),
GSE72773 (Horvath et al., 2016), GSE59065 (Tserel et al., 2015),
GSE67705 (Gross et al., 2016), GSE106648 (Kular et al., 2018),
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GSE137903 (McEwen et al., 2020), GSE137688 (McEwen et al., 2020),
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2016), GSE124366 (Islam et al., 2019), GSE113725 (Crawford et al.,
2018), GSE61151 (Flanagan et al., 2015), GSE69270 (Kananen et al.,
2016), GSE74548 (Kok et al., 2015), GSE75704 (Weber et al., 2018),
GSE74414 (Zannas et al., 2015), GSE116379 (Boks et al., 2018),
GSE41826 (Guintivano et al., 2013), GSE67530 (Szilágyi et al., 2017),
GSE89707 (Viana et al., 2017), GSE61256 (Horvath et al., 2014),
GSE71955 (Limbach et al., 2016), GSE107459 (Knight et al., 2018),
GSE68194 (Jylhävä et al., 2016), GSE101961 (Song et al., 2017),
GSE147430 (Martos et al., 2020), GSE94876 (Jessen et al., 2018),
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2020), GSE158063 (Huang et al., 2021), GSE179325 (Barturen et al.,
2022), GSE219037 (Mao et al., 2023), GSE175458 (Borie et al., 2022),
GSE132181 (McKennan et al., 2021), GSE220622 (Sánchez-Cabo et al.,
2023), GSE185061 (Venkateswaran et al., 2023), GSE224363 (Quinn
et al., 2023a), GSE197676 (Dong et al., 2022), GSE234461 (Kalyakulina
et al., 2023b), GSE207927 (Sprague et al., 2022), GSE147040
(Markunas et al., 2021), GSE172365 (Soliai et al., 2021), GSE171140
(Landen et al., 2023), GSE227809 (Apsley et al., 2023), GSE224573
(Quinn et al., 2023b), GSE143157 (Rydbirk et al., 2020), GSE164822
(Shu et al., 2021), GSE137682 (McEwen et al., 2020), GSE118144
(Yeung et al., 2019), GSE164056 (Wiegand et al., 2021), GSE216024
(Devall et al., 2022), GSE157252 (Piao et al., 2022), GSE174818 (Balnis
et al., 2021), GSE196432 (Koeck et al., 2022), GSE201752 (Estupiñán-
Moreno et al., 2022), GSE151485 (Sandoval-Sierra et al., 2020),
GSE199700 (Yumi Noronha et al., 2022), GSE154566 (Kandaswamy
et al., 2021), GSE151732 (Devall et al., 2021), GSE114134 (Martino
et al., 2018) GSE142257 (Noreen et al., 2020).
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Hägg, S., Hu-Seliger, T.T., Levine, M.E., 2022. A computational solution for
bolstering reliability of epigenetic clocks: Implications for clinical trials and
longitudinal tracking. Nat. Aging 2, 644–661. https://doi.org/10.1038/s43587-022-
00248-2.

Horvath, S., n.d. DNA Methylation Age Calculator [WWW Document]. DNA Methylation
Age Calculator. URL 〈https://dnamage.clockfoundation.org/〉 (accessed 3.5.24).

Horvath, S., 2013. DNA methylation age of human tissues and cell types. Genome Biol.
14, R115. https://doi.org/10.1186/gb-2013-14-10-r115.

Horvath, S., Erhart, W., Brosch, M., Ammerpohl, O., von Schönfels, W., Ahrens, M.,
Heits, N., Bell, J.T., Tsai, P.-C., Spector, T.D., Deloukas, P., Siebert, R., Sipos, B.,
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Rydbirk, R., Folke, J., Busato, F., Roché, E., Chauhan, A.S., Løkkegaard, A., Hejl, A.-M.,
Bode, M., Blaabjerg, M., Møller, M., Danielsen, E.H., Brudek, T., Pakkenberg, B.,
Tost, J., Aznar, S., 2020. Epigenetic modulation of AREL1 and increased HLA
expression in brains of multiple system atrophy patients. Acta Neuropathol.
Commun. 8, 29. https://doi.org/10.1186/s40478-020-00908-7.

Sala, C., Di Lena, P., Fernandes Durso, D., Prodi, A., Castellani, G., Nardini, C., 2020.
Evaluation of pre-processing on the meta-analysis of DNA methylation data from the
Illumina HumanMethylation450 BeadChip platform. PLoS One 15, e0229763.
https://doi.org/10.1371/journal.pone.0229763.

Sánchez-Cabo, F., Fuster, V., Silla-Castro, J.C., González, G., Lorenzo-Vivas, E.,
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Höglinger, G.U., Müller, U., 2018. Epigenome-wide DNA methylation profiling in
Progressive Supranuclear Palsy reveals major changes at DLX1. Nat. Commun. 9,
2929. https://doi.org/10.1038/s41467-018-05325-y.

Widayati, T.A., Schneider, J., Panteleeva, K., Chernysheva, E., Hrbkova, N., Beck, S.,
Voloshin, V., Chervova, O., 2023. Open access-enabled evaluation of epigenetic age
acceleration in colorectal cancer and development of a classifier with diagnostic
potential. Front. Genet. 14 https://doi.org/10.3389/fgene.2023.1258648.

Wiegand, A., Kreifelts, B., Munk, M.H.J., Geiselhart, N., Ramadori, K.E., MacIsaac, J.L.,
Fallgatter, A.J., Kobor, M.S., Nieratschker, V., 2021. DNA methylation differences
associated with social anxiety disorder and early life adversity. Transl. Psychiatry 11,
104. https://doi.org/10.1038/s41398-021-01225-w.

Wiens, J., Saria, S., Sendak, M., Ghassemi, M., Liu, V.X., Doshi-Velez, F., Jung, K.,
Heller, K., Kale, D., Saeed, M., Ossorio, P.N., Thadaney-Israni, S., Goldenberg, A.,
2019. Do no harm: a roadmap for responsible machine learning for health care. Nat.
Med 25, 1337–1340. https://doi.org/10.1038/s41591-019-0548-6.

Wu, Y., Qie, R., Cheng, M., Zeng, Y., Huang, S., Guo, C., Zhou, Q., Li, Q., Tian, G.,
Han, M., Zhang, Y., Wu, X., Li, Y., Zhao, Y., Yang, X., Feng, Y., Liu, D., Qin, P.,
Hu, D., Hu, F., Xu, L., Zhang, M., 2021. Air pollution and DNA methylation in adults:
A systematic review and meta-analysis of observational studies. Environ. Pollut. 284,
117152 https://doi.org/10.1016/j.envpol.2021.117152.

Yeung, K.S., Lee, T.L., Mok, M.Y., Mak, C.C.Y., Yang, W., Chong, P.C.Y., Lee, P.P.W.,
Ho, M.H.K., Choufani, S., Lau, C.S., Lau, Y.L., Weksberg, R., Chung, B.H.Y., 2019.
Cell lineage-specific genome-wide DNA methylation analysis of patients with
paediatric-onset systemic lupus erythematosus. Epigenetics 14, 341–351. https://
doi.org/10.1080/15592294.2019.1585176.

Yumi Noronha, N., da Silva Rodrigues, G., Harumi Yonehara Noma, I., Fernanda Cunha
Brandao, C., Pereira Rodrigues, K., Colello Bruno, A., Sae-Lee, C., Moriguchi
Watanabe, L., Augusta de Souza Pinhel, M., Mello Schineider, I., Luciano de
Almeida, M., Barbosa Júnior, F., Araújo Morais, D., Tavares de Sousa Júnior, W.,
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