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Introduction

• Cardiovascular diseases are one of the major causes of mortality worldwide, 
so the development of effective methods for diagnosing and monitoring 
cardiac activity is important.

• Electrocardiography (ECG) is one 
of the most informative non-
invasive procedures to help 
understand the state of the human 
cardiovascular system.

• Today, convolutional neural 
network is a working solution for 
most tasks related to the analysis of 
medical data, in particular ECG 
signals. 2



Introduction

 Challenge for deep neural networks - high dimensionality of ECG data. 

Solution: use convolutional autoencoder (unsupervised learning) to reduce the 
dimensionality of the signal by extracting informative features from the signals, 
eliminating noise in them, but still preserving their semantics.
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The main questions:  
• What does the network actually learn during unsupervised learning?
• To what extent can the obtained data representations be interpreted by 

humans? 

The aim of this study: to investigate what happens inside an already well-trained 
convolutional autoencoder by searching for specialized neurons for different 
wave types in ECG signals.
Relevance of this study: currently there is no well-performing system capable of 
classifying into a large number of classes.



Problem statement

Task formulation: to investigate the presence or absence of specialization in 
trained neurons of a convolutional autoencoder applied to ECG signals using 
statistical hypothesis testing. 
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To do this:
• Measure the activations of the 

of the hidden layer neurons for 
each of the considered wave 
types (QRS complex, P-wave 
and T-wave);

• Compare the activation results 
with each other to answer the 
question whether there are 
distinct differences between 
them.



Problem statement
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Assuming that a given neuron is specialized in some type of wave, such as P-wave, 
its activation on P-wave should systematically differ from its activation on other 
types of wave.

Mann-Whitney criterion is used to test the null hypothesis 
that the samples are not statistically different.

• The result is p-value  ‒  represents a probability that measures the 
evidence against the null hypothesis 

• if p-value ≤ chosen significance level      reject the null hypothesis 
and suggests that there is a statistically significant difference between 
two samples. 



Problem statement
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Scheme for detecting neuron specialization

Obtain neuron 
activation samples 
for P-wave, QRS 

complex and T-wave

Compare samples pairwise 
using the Mann-Whitney 

test

Analyze the obtained p-values

For the considered signal type: if in two pairs containing the given 
wave type, the p-value is less than the chosen significance level, and 
in the third pair not containing the given wave type, the p-value is 

greater than the chosen significance level, then it means that the 
analyzed neuron is specialized only in considered signal type



Data description and preparation
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Dataset:  LUDB is a database of ECG signals with labeled boundaries and 
peaks of P, T and QRS complexes.

Description: 
• Consists of 200 ECG signal recordings of 10 seconds each in 12 

leads representing different ECG signal morphologies.
• The boundaries of P, T waves, and QRS complexes were manually 

annotated by cardiologists for all 200 records. 
• Each record contains the corresponding diagnosis.

Data preparation: All the data was divided into training set, test set and 
experiment set in the proportion of 80%, 11% and 9% respectively. Then, in 
the training and test set, chunks of a length equal to 656 were extracted 
using each of the ECG leads.



Description of network 
architecture and training process
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General structure of autoencoder:
• The encoder compresses the input 

data into a representation in a 
latent space;

• The decoder reconstructs the 
original input data from this 
representation

Architecture of the developed 
convolutional autoencoder:

• 3 convolutional encoder layers 
and 3 convolutional decoder 
layers

Training process:
• 50 epochs;
• Train set consists of 6566 records;
• Validation after each epoch on 730 

records;
• MSE Loss and Adam optimizer.



Organization of experiments
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Cardiac cycle 

P-wave QRS complex T-wave

Scheme of experimental data generation: 

OY: ECG signal values
OX: time



Organization of experiments
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The result of interpolation: 

QRS complex

T-wave

P-wave



Organization of experiments
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Scheme of conducting experiments:
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QRS samples

P-wave samples
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Results
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Specialized neurons are defined as those neurons for which p-value in two of three 
cases is less than 0.05 (chosen significance level).
Heatmaps of obtained p-values from the Mann-Whitney Test:

p-values from the Mann-
Whitney test for activation 
samples of QRS and T

p-values from the Mann-
Whitney test for activation 
samples of QRS and P

p-values from the Mann-
Whitney test for activation 
samples of P and T

p-value



Results
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Heatmaps of specialized neurons:

Neurons specialized in
the QRS complex

Neurons specialized in
the P-wave

Neurons specialized in
the T-wave

The more specialized the neuron is, the closer its value is to 1 in the heatmap.



Results
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Histogram of p-values in the Mann-Whitney test on samples of P-wave and QRS 
complex neuron activation for T-wave specialized neurons:

• The analyzed neurons are 
actually specialized only in T-
wave. 

• The percentage of specialized 
neurons is 0.29%.

• Experiments on changing 
architecture of autoencoder 
(kernel size, the number of 
convolutional layers, the 
number of channels) showed 
that a stable appearance of 
specialized neurons for the T-
wave continued to be observed.



Conclusion
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• Our study of a well-trained autoencoder revealed that statistical 
specialization of neurons for fragments of the cardiac cycle important for 
diagnosis is very small. 

• The number of specialized neurons for different fragments of the cardiac 
cycle is different, which shows problems with the interpretability of the 
convolutional network representation of the data. 

• Experiments were also conducted to vary the architecture of the autoencoder, 
showing that the detected tendencies remain invariant to architecture 
changes.

•  A further direction of research could be to use the knowledge of neuron 
specialization in developing new transfer learning techniques for training 
neural networks for electrocarodiagram markup and diagnosing to improve 
the interpretability of the results.
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