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Fig. 2. Changes in the field activity and state of hippocampal tissues in the model of kainate neurotoxicity. a) Examples of recorded hippocam-
pal LFP from healthy animals (controls) and in the model of kainate neurotoxicity (KA). Animals with the kainate neurotoxicity model dis-
played frequent high-amplitude paroxysmal events. b) Examples of LFP (same as in a) filtered in the 8 (4-10 Hz, above), slow vy (25-50 Hz,
middle), and fast y (55-100 Hz, below) ranges. ¢) Total level of anomalous activity, all animals — integral of all high-amplitude (>3SD) events
in hippocampal LFP. The level in controls was taken as 100%. ) Examples of frontal sections of the hippocampus stained by the Nissl method.
Left: sections including all hippocampal fields and the dentate fascia in controls and after administration of kainic acid (KA): right: histogram
showing mean cell density in the hippocampus as a whole (hip) and in separate parts of the hippocampus (CA1, CA3, DG): significant changes
in cell numbers in field CA3 (*p = 0.0483).
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Combining analysis of

time -varying

spike rates with automated sleep staging
demonstrated that spikes in non-rapid

eye movement

sleep are more frequent and better localize se
generators

than spikes occurring in wakefulness




Andrade-Valenca et al.,2011
The rates and the proportion of
channels with gamma and ripple

fast oscillations are

higher inside the SOZ,
indicating that they can be used
as interictal scalp EEG markers for the

SOZ.

[ Figure1 Patlent 10: Examples of artifacts and ripple osclllatlons
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in amplitude and frequency than artifactual oscillations.
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Fig. 2. Changes in the field activity and state of hippocampal tissues in the model of kainate neurotoxicity. a) Examples of recorded hippocam-
pal LFP from healthy animals (controls) and in the model of kainate neurotoxicity (KA). Animals with the kainate neurotoxicity model dis-
played frequent high-amplitude paroxysmal events. b) Examples of LFP (same as in a) filtered in the 8 (4-10 Hz, above), slow vy (25-50 Hz,
middle), and fast y (55-100 Hz, below) ranges. ¢) Total level of anomalous activity, all animals — integral of all high-amplitude (>3SD) events
in hippocampal LFP. The level in controls was taken as 100%. ) Examples of frontal sections of the hippocampus stained by the Nissl method.
Left: sections including all hippocampal fields and the dentate fascia in controls and after administration of kainic acid (KA): right: histogram
showing mean cell density in the hippocampus as a whole (hip) and in separate parts of the hippocampus (CA1, CA3, DG): significant changes
in cell numbers in field CA3 (*p = 0.0483).
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Li et al.2018

MEG studly.

Compared with the healthy controls, the

left TLE group presented significantly increased
powers in the left temporal region, whereas
the right TLE group exhibited significantly
increased powers in the right temporal region in
the delta and theta bands.

Our results suggest that in the delta and theta
bands, regional average powers in the left and
right temporal regions can be taken as
biomarkers for distinguishing MRI-negative TLE
patients from healthy controls.

LTLEs vs. HCs RTLEs vs. HCs RTLEs vs. LTLEs

Right

% Differerce

Figure 1. Regional band-power compansons between the three groups of subjects. RTLEs = nght
TLEs; LTLEs = left TLEs; HCs = healthy controls; & = delta; 8 = theta; a. = upper alpha; F = frontal; T
= temporal.

In the global band power, the right TLE group presented significant increases in the delta (corrected
P = .026) and theta (corrected P = .015) bands when compared with the healthy controls (Fig. 2). No
significant differences between the left TLE group and the healthy controls and between the left and
right TLE groups in the global band power were found for any selected frequency band.
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Figure 2. Global band-power comparisons between the three groups of subjects. Error bars denote
standard deviations of global power. Asterisks indicate that there was a significant difference between
the specified two groups using the Wilcoxon rank-sum test (two-tailed) after Bonferroni correction. &

= delta; 8 = theta: o, = lower alpha: a, = upper alpha; p = beta; y = gamma.



942 | BRAIN 2022: 145; 939-949

delta -

0.270

0.260

0.250

0.234

0.230

Y 0.226

0,222

0.204
0.200

0.196

0.192

0.194
0.188

0.182
0.130

~:; g...

e li 04500 N

0.120

AR 0.200
° ..‘y g :.'.1 v‘.‘-

[ ] - & L ]
LY i, Lo e%
t ade 7 @
e o 0.110
lexft left  right right

normative map of relative band power

P. N. Taylor et al.

A Patient 1216

left middle bermporal gyrus ;
nol-gelzure onsel Zone

M AL el

802
&

left lateral occipital gyrus,
saizure onsel zone

O 200 mv |
188c

E ;O@ ,,f-,LJ.-,ﬂfM it bbby

left middie temparal gyrus,

- -*:m—- P ——
R F—p B |z}=0.30
patient 121§ ,_‘ﬁ " 0 ' ’.
i 4 & P |Z]=U 0

left Tateral cecipital gyrus,

o 0 |z[=1.04
NoMMasha mag
—

i -

manmalve map "”'.\J* o8 z=2.99)
—s — - e
——— s e ;

P —

I 1! * [ I=l=0 &0

—o— i Ea
—Fsit— e

4 @ 4
standardised refative band POWAET

pabient 1218

v B |z|=0.30~

B2 ®
D e
@

®
-

maximum abnormabity {|z[)
across bands

Figure 2 Normative band power as a reference to detect abnormalities in individual patients. (A) Visualization of the regions covered by the
implanted electrodes in an example patient with epilepsy. 18 of the 128 regions were sampled by the electrode contacts in this patient (black circles).
Time series from two example regions are shown that are without obvious epileptiform activity (inset). One example region (left lateral cccipital
gyrus ) was the seizure onset zone in this patient. (B) Relative band power for each of the two regions, acToss each frequency band is plotted for the
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abnormality in any frequency band.

Figure 1 Normative band power varies across regions. Mean relative band power in each region for each of the five frequency bands of interest. The

colour axes scale differs for each frequency band with generally higher power in lower fraquencies.



Kalamangalam et al. 2014 Specifically, we hypothesized that
transmission of oscillatory disturbance within or close to areas
of focal epilepsy would be less ‘constrained’ than over normal
areas — allowing oscillatory instabilities to propagate more
readily within the network — and that these changes would be
detectable on scalp EEG.

Spectra from patientsshowed a noticeable left-right asymmetry
in the fluctuationsof the spectral waveform (i.e., line length,
that character-ized the ‘wiggliness’ of the line about its
trajectory) in thecanonical , , and bands (Figs. 2 and 3), in
comparison tonormal
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Pyrzowski et al. 2015 a oo
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Figure 4

Spatial specificity of PAC. Modulation was computed in 10-s windows at different seizure periods (IS, PS, PS10, early-
seizure, mid-seizure, terminal-seizure, post-seizure). The MI co-modulograms of all channels were arranged in turn
in each sub-figure. The scales were indicated by the color bar on the right side of the sub-figure. The red rectangle is
the excised area; The black rectangles is SOZ; The purple rectangles is the strongest PAC channel. This figure shows
that the strong PAC in the IS, PS, PS10 periods was more concentrated on the resection margin. Once seizure begined,
the strong PAC gradually subsided from SOZ to surrounding general resection area, and gradually translocated to the
unresection area. In the post-seizure period, the strong PAC channels returned to the resected area. During the IS and
PS period, the strongest PAC channel was usually located in resection margin very near but not SOZ; in the PSyy, it

was often located in the SOZ.



Amiri et al.2016

PAC between high and low frequency rhythms
was found to be significantly stronger in

the SOZ compared to normal regions. Also, the
coupling was generally more elevated

in spiking channels outside the SOZ than in
normal regions.
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FIGURE 4 | Average PAC quantified by MI in different regions (A) gamma band and low frequencies, (B) ripple band and low frequencies (top: delta,
middle: theta, balow: alpha); Green: NoZ, Yellow: EIZ, Red: SOZ * Shows signficant difference [p = 0,05, corected). Results are plotted &8 the mean + SE.
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Gunnarsdotir 2022
We developed an algorithm that identifies two groups of nodes from the interictal iEEG network:

those that are continuously inhibiting a set of neighbouring nodes (‘sources’) and
the inhibited nodes themselves (‘sinks’).
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1. C6op AaHHbIX M NOCTPOEHME KapT HOPMaIbHOM aKTUBHOCTM MO3ra B CTaHAAPTHbIX OTBEAEHUSAX:
A) KapTa CneKkTpaibHOM MOLLHOCTU U TOKaNM3aLUNMU UCTOYHMKOB PUTMUYECKOM aKTUBHOCTU

B) KapTa KOrepeHTHOCTU N PYHKLMOHANbHOM CBA3AaHHOCTU OTBEAEHUN

B) KapTa Kpocc-4acTOTHOM MoAynAaLMm

2. AHanus natonoruyeckoi I3 ¢ BbiABNEHNEM aOHOPMAIbHOM aKTUBHOCTU U OTK/IOHEHMIA OT HOPMATUBHbIX KapT

3. Pa3pa60TKa dBTOMATU3NPOBAHHOIO a/ZITOPUTMa BbIABIEHNA NaTONOrMYeCKOM aKTUBHOCTU CBA3AHHOW C I'IAI'IepBO36y,£I,VIMOCTbI-O.



HFOs are extracted by amplifying the suitably
filtered EEG signal and refer to distinct types of
brain activity occurring in a frequency band
ranging from 80 Hz to 600 Hz and have been
typically separated into ripples (80-250 Hz) and
fast ripples (FRs: 250-600 Hz)

Moveover, FRs appear to correlate with reduced
hippocampal volumes and neuronal loss both in
experimental models (Bragin et al., 2002a;
Foffani et al., 2007) and in human TLE (Ogren et
al., 2009; Staba et al., 2007).

ISs can be distinguished from non-epileptic sharp

waves that are putatively sustained by physiologically bursting
neurons

by qualitative and quantitative criteria and have characteristics
as follows:

(1) Di- or tri-phasic wave with sharp or spiky morphology; (2)
different wave duration than the ongoing background activity;
(3)

asymmetry of the waveform; (4) followed by a slow after-wave;
(5) the

background activity is disrupted by the presence of the ISs; and
(6)

voltage map with the distribution of negative and positive
potentials

suggesting a source in the brain corresponding to a radial,
oblique, or

tangential orientation of the source (Kane et al., 2017); while
nonepileptic

sharp waves are irregular, show a complex morphology, are
smaller in amplitude and have a longer duration than ISs (de
Curtis and

Avanzini, 2001).



the majority of ISs were traveling waves,
traversing the same path as ictal discharges | |
during seizures and with a fixed direction re(atlve —— \ =
to seizure propagation and most ISs were

bidirectional, with one predominant and a secomdeFO

[ess Frequemt antipodal direction (Smith et\al., 2022). IS
Slow wave activities (SWAS), des:gmated as lowRipple:
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® Gap junction

HFOs are believed to originate from tmmk{emt’ alanes ol
synchronization of neuronal populations ( E\ngeé;éoft’;gggse ® Ephigptic IntGraction
and da Silva, 2012; Engel Jr et al., 2009)\or

disinhibited neuronal metworks (Zijlmans et al.,

2011), leading to highly synchronized peyr ]a(
activity over an area of brain tissue :
with normal and pathological brain functions. \
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revealed network markers of seizures from sho/tesuraical evaluation
epochs of the interictal resting state, suggesting ?
Irritative zone

that the causal network properties that drive
seizure onset and propagation are observable even
in the absence of seizures and interictal events predicting EZ or S0Z
(e.g., 1Ss) which further illustrated that the

epileptic brain has an enduring trait to produce
seizures (Woldman et al., 2020). Similarly, CHEae severty
et al. revealed that directed functional networks
inferved from interictal EEG may be used togs) Respond to
diagnose TLE in the absence of ISs and thus ERess's change
resting-state connectivity alterations could

constitute an important biomarker of TLE (CtQ. ... of

et al., 2016). status epilepticus

Lundstrom et al. showed that a combination of interictal
biomarkers including the ISOs, ISs rate, and HFOs rate corre
predicted whether the left, right, both, or neither temperakizure last 30 min

lobes were involved for almost 90% of patients (Lundstrom et

al., 2021). Forecast of
seizure occurrence
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